Browsing by Author "Paul, Mark R."
Now showing 1 - 20 of 198
Results Per Page
Sort Options
- 3D Dynamic Stall Simulation of Flow over NACA0012 Airfoil at 10⁵ and 10⁶ Reynolds NumbersKasibhotla, Venkata ravishankar (Virginia Tech, 2014-04-03)The work presented in this thesis attempts to provide an understanding of the physics behind the dynamic stall process by simulating the flow past pitching NACA-0012 airfoil at 100,000 and 1 million Reynolds number based on the chord length of the airfoil and at different reduced frequencies of 0.188 and 0.25 respectively in a three dimensional flow field. The mean angles of attack are 12 deg. and 15 deg. and the amplitudes of pitching are 6 deg. and 10 deg. respectively. The turbulence in the flow field is resolved using large eddy simulations with dynamic Smagorinsky model at the sub grid scale. The lift hysteresis plots of this simulation for both the configurations are compared with the corresponding experiments. The development of dynamic stall vortex, vortex shedding and reattachment as predicted by the present study are discussed in detail. There is a fairly good match between the predicted and experimentally measured lift coefficient during the upstroke for both cases. The net lift coefficient for the Re = 100,000 case during downstroke matches with the corresponding experimental data, the present study under-predicts the lift coefficient as compared to the experimental values at the start of downstroke and over-estimates for the remaining part of the downstroke. The trend of the lift coefficient hysteresis plot with the experimental data for the Re = 1 million case is also similar. This present simulations have shown that the downstroke phase of the pitching motion is strongly three dimensional and is highly complex, whereas the flow is practically two dimensional during the upstroke.
- 3D Micromachined Passive Components and Active Circuit Integration for Millimeter-wave Radar ApplicationsOliver, John Marcus (Virginia Tech, 2012-02-20)The development of millimeter-wave (30-300 GHz) sensors and communications systems has a long history of interest, spanning back almost six decades. In particular, mm-wave radars have applications as automotive radars, in remote atmospheric sensing applications, as landing radars for air and spacecraft, and for high precision imaging applications. Mm-wave radar systems have high angular accuracy and range resolution, and, while susceptible to atmospheric attenuation, are less susceptible to optically opaque conditions, such as smoke or dust. This dissertation document will present the initial steps towards a new approach to the creation of a mm-wave radar system at 94 GHz. Specifically, this dissertation presents the design, fabrication and testing of various components of a highly integrated mm-wave a 94 Ghz monopulse radar transmitter/receiver. Several architectural approaches are considered, including passive and active implementations of RF monopulse comparator networks. These architectures are enabled by a high-performance three-dimensional rectangular coaxial microwave transmission line technology known as PolyStrataTM as well as silicon-based IC technologies. A number of specific components are examined in detail, including: a 2x2 PolyStrata antenna array, a passive monopulse comparator network, a 94 GHz SiGe two-port active comparator MMIC, a 24 GHz RF-CMOS 4-port active monopulse comparator IC, and a series of V- and W-band corporate combining structures for use in transmitter power combining applications. The 94 GHz cavity-backed antennas based on a rectangular coaxial feeding network have been designed, fabricated, and tested. 13 dB gain for a 2 x 2 array, as well as antenna patterns are reported. In an effort to facilitate high-accuracy measurement of the antenna array, an E-probe transition to waveguide and PolyStrata diode detectors were also designed and fabricated. AW-band rectangular coaxial passive monopulse comparator with integrated antenna array and diode detectors have also been presented. Measured monopulse nulls of 31.4 dB in the ΔAZ plane have been demonstrated. 94-GHz SiGe active monopulse comparator IC and 24 GHz RF-CMOS active monopulse comparator RFIC designs are presented, including detailed simulations of monopulse nulls and performance over frequency. Simulations of the W-band SiGe active monopulse comparator IC indicate potential for wideband operation, with 30 dB monopulse nulls from 75-105 GHz. For the 24-GHz active monopulse comparator IC, simulated monopulse nulls of 71 dB and 68 dB were reported for the azimuthal and elevational sweeps. Measurements of these ICs were unsuccessful due to layout errors and incomplete accounting for parasitics. Simulated results from a series of rectangular coaxial power corporate power combining structures have been presented, and their relative merits discussed. These designs include 2-1 and 4-1 reactive, Wilkinson, and Gysel combiners at V- and W-band. Measured back-to-back results from Gysel combiners at 60 GHz included insertion loss of 0.13 dB per division for a 2-1 combination, and an insertion loss of 0.3 dB and 0.14 dB for "planar" and "direct" 4-1 combinations, respectively. At 94 GHz, a measured insertion loss of 0.1 dB per division has been presented for a 2-1 Gysel combination, using a back-to-back structure. Preliminary designs for a solid-state power amplifier (SSPA) structure have also been presented. Finally, two conceptual monopulse transceivers will be presented, as a vehicle for integrating the various components demonstrated in this dissertation.
- Active Transport in Chaotic Rayleigh-Bénard ConvectionMehrvarzi, Christopher Omid (Virginia Tech, 2014-01-13)The transport of a species in complex flow fields is an important phenomenon related to many areas in science and engineering. There has been significant progress theoretically and experimentally in understanding active transport in steady, periodic flows such as a chain of vortices but many open questions remain for transport in complex and chaotic flows. This thesis investigates the active transport in a three-dimensional, time-dependent flow field characterized by a spatiotemporally chaotic state of Rayleigh-Be?nard convection. A nonlinear Fischer-Kolmogorov-Petrovskii-Piskunov reaction is selected to study the transport within these flows. A highly efficient, parallel spectral element approach is employed to solve the Boussinesq and the reaction-advection-diffusion equations in a spatially-extended cylindrical domain with experimentally relevant boundary conditions. The transport is quantified using statistics of spreading and in terms of active transport characteristics like front speed and geometry and are compared with those results for transport in steady flows found in the literature. The results of the simulations indicate an anomalous diffusion process with a power law 2 < ? < 5/2 a result that deviates from other superdiffusive processes in simpler flows, and reveals that the presence of spiral defect chaos induces strongly anomalous transport. Additionally, transport was found to most likely occur in a direction perpendicular to a convection roll in the flow field. The presence of the spiral defect chaos state of the fluid convection is found to enhance the front perimeter by t^3/2 and by a perimeter enhancement ratio r(p) = 2.3.
- Adsorption of Small Molecules in Advanced Material SystemsZhang, Fei (Virginia Tech, 2019-06-10)Adsorption is a ubiquitous phenomenon that plays key roles in numerous applications including molecule separation, energy storage, catalysis, and lubrications. Since adsorption is sensitive to molecular details of adsorbate molecule and adsorbent materials, it is often difficult to describe theoretically. Molecular modeling capable of resolving physical processes at atomistic scales is an effective method for studying adsorption. In this dissertation, the adsorption of small molecules in three emerging materials systems: porous liquids, room-temperature ionic liquids, and atomically sharp electrodes immersed in aqueous electrolytes, are investigated to understand the physics of adsorption as well as to help design and optimize these materials systems. Thermodynamics and kinetics of gas storage in the recently synthesized porous liquids (crown-ether-substituted cage molecules dispersed in an organic solvent) were studied. Gas molecules were found to store differently in cage molecules with gas storage capacity per cage in the following order: CO2>CH4>N2. The cage molecules show selectivity of CO2 over CH4/N2 and demonstrate capability in gas separation. These studies suggest that porous liquids can be useful for CO2 capture from power plants and CH4 separation from shale gas. The effect of adsorbed water on the three-dimensional structure of ionic liquids [BMIM][Tf2N] near mica surfaces was investigated. It was shown that water, as a dielectric solvent and a molecular liquid, can alter layering and ordering of ions near mica surfaces. A three-way coupling between the self-organization of ions, the adsorption of interfacial water, and the electrification of the solid surfaces was suggested to govern the structure of ionic liquid near solid surfaces. The effects of electrode charge and surface curvature on adsorption of N2 molecules near electrodes immersed in water were studied. N2 molecules are enriched near neutral electrodes. Their enrichment is enhanced as the electrode becomes moderately charged but is reduced when the electrode becomes highly charged. Near highly charged electrodes, the amount of N2 molecules available for electrochemical reduction is an order of magnitude higher near spherical electrodes with radius ~1nm than near planar electrodes. The underlying molecular mechanisms are elucidated and their implications for development of electrodes for electrochemical reduction of N2 are discussed.
- Adsorption-Mediated Fluid Transport at the NanoscaleMoh, Do Yoon (Virginia Tech, 2022-04-20)Injecting CO2 into unconventional reservoirs to enhance oil recovery has been widely studied due to its potential to improve the profitability of these reservoirs. CO2 Huff-n-Puff is emerging as a promising method, but exploiting its full potential is challenging due to difficulties in optimizing its operations. The latter arises from the limited understanding of CO2 and oil transport in unconventional reservoirs. This dissertation used molecular dynamics simulations to study the storage and transport of oil and CO2 in unconventional reservoirs in single nanopores. The first study examined the modulation of oil flow in calcite pores by CO2. It is discovered that CO2 molecules adsorb strongly on calcite walls and can change decane permeability through 8 nm-wide pores by up to 30%. They impede decane flow at moderate adsorption density but enhance flow as adsorption approaches saturation. The second study investigated the CO2 transport in 4 nm-wide calcite pores during the soaking phase of Huff-n-Puff operations. CO2 entering the pore can become adsorbed on pore walls and diffuse on them or diffuse as free CO2 molecules. The accumulation of CO2 follows a diffusion behavior with an effective diffusivity ~50% smaller than bulk CO2. Two dimensionless groups are proposed to gauge the importance of surface adsorption and diffusion in CO2 storage and transport in nanopores. The third study examined the extraction of decane initially sealed in a 4 nm-wide calcite pore through exchange with CO2 and CH4 in a reservoir. The CO2-decane exchange is significantly driven by the evolution of adsorbed oil and gas initially, but a transition to dominance by free oil and gas occurs later; for CH4-decane exchange, the opposite occurs. The net gas accumulation and decane extraction follow the diffusive law, but their effective diffusivities do not always align well with the self-diffusion coefficients of CO2, CH4, and decane in the nanopore. The three studies identified the essential roles of gas/oil adsorption in their net transport in nanopores and, thus, unconventional reservoirs. Delineating these roles and formulating dimensionless groups to gauge their importance help develop better models for enhanced oil recovery from unconventional reservoirs by CO2 injection.
- Advanced Spectral Methods for Turbulent FlowsNasr Azadani, Leila (Virginia Tech, 2014-04-24)Although spectral methods have been in use for decades, there is still room for innovation, refinement and improvement of the methods in terms of efficiency and accuracy, for generalized homogeneous turbulent flows, and especially for specialized applications like the computation of atmospheric flows and numerical weather prediction. In this thesis, two such innovations are presented. First, inspired by the adaptive mesh refinement (AMR) technique, which was developed for the computation of fluid flows in physical space, an algorithm is presented for accelerating direct numerical simulation (DNS) of isotropic homogeneous turbulence in spectral space. In the adaptive spectral resolution (ASR) technique developed here the spectral resolution in spectral space is dynamically refined based on refinement criteria suited to the special features of isotropic homogeneous turbulence in two, and three dimensions. Applying ASR to computations of two- and three-dimensional turbulence allows significant savings in the computational time with little to no compromise in the accuracy of the solutions. In the second part of this thesis the effect of explicit filtering on large eddy simulation (LES) of atmospheric flows in spectral space is studied. Apply an explicit filter in addition to the implicit filter due to the computational grid and discretization schemes in LES of turbulent flows allows for better control of the numerical error and improvement in the accuracy of the results. Explicit filtering has been extensively applied in LES of turbulent flows in physical space while few studies have been done on explicitly filtered LES of turbulent flows in spectral space because of perceived limitations of the approach, which are shown here to be incorrect. Here, explicit filtering in LES of the turbulent barotropic vorticity equation (BVE) as a first model of the Earth's atmosphere in spectral space is studied. It is shown that explicit filtering increases the accuracy of the results over implicit filtering, particularly where the location of coherent structures is concerned.
- Aerodynamic Force and Pressure Loss Measurements on Low Aspect Ratio Pin Fin ArraysThrift, Alan Albright (Virginia Tech, 2007-02-09)The desire to achieve higher heat transfer augmentation for turbine blades is fueled by the increased power output and efficiency that is achievable with high turbine inlet temperatures. The use of internal cooling channels fitted with pin fin arrays serves as one method of accomplishing this goal. Consequently, the addition of pin fin arrays comes at the expense of increased pressure drop. Therefore the pin fin geometry must be judiciously chosen to achieve the required heat transfer rate while minimizing the associated pressure drop. This project culminates in the measurement of both pin fin force and array pressure drop as they related to changes in the array geometry. Specifically, the effects of Reynolds number, spanwise pin spacing, streamwise pin spacing, pin aspect ratio, and flow incidence angle. Direct two-component force measurement is achieved with a cantilever beam force sensor that uses highly sensitive piezoresistive strain gauges, relating the strain at the base of the beam to the applied force. With proper characterization, forces as small as one-tenth the weight of a paper clip are successfully measured. Additionally, array pressure drop measurements are achieved using static pressure taps. Experiments were conducted over a range of Reynolds numbers between 7,500 and 35,000. Changes in the spanwise pin spacing were shown to substantially alter the pin fin drag and array pressure drop, while changes in the streamwise pin spacing were less influential. The experimental results also showed a dramatic reduction in the pin fin drag and array pressure drop for an inline flow incidence angle. Finally, changes in the pin aspect ratio were shown to have little effect on the array pressure drop.
- Aerodynamic Performance of High Turning Airfoils and the Effect of Endwall Contouring on Turbine PerformanceAbraham, Santosh (Virginia Tech, 2011-08-31)Gas turbine companies are always focused on reducing capital costs and increasing overall efficiency. There are numerous advantages in reducing the number of airfoils per stage in the turbine section. While increased airfoil loading offers great advantages like low cost and weight, they also result in increased aerodynamic losses and associated issues. The strength of secondary flows is influenced by the upstream boundary layer thickness as well as the overall flow turning angle through the blade row. Secondary flows result in stagnation pressure loss which accounts for a considerable portion of the total stagnation pressure loss occurring in a turbine passage. A turbine designer strives to minimize these aerodynamic losses through design changes and geometrical effects. Performance of airfoils with varying loading levels and turning angles at transonic flow conditions are investigated in this study. The pressure difference between the pressure side and suction side of an airfoil gives an indication of the loading level of that airfoil. Secondary loss generation and the 3D flow near the endwalls of turbine blades are studied in detail. Detailed aerodynamic loss measurements, both in the pitchwise as well as spanwise directions, are conducted at 0.1 axial chord and 1.0 axial chord locations downstream of the trailing edge. Static pressure measurements on the airfoil surface and endwall pressure measurements were carried out in addition to downstream loss measurements. The application of endwall contouring to reduce secondary losses is investigated to try and understand when contouring can be beneficial. A detailed study was conducted on the effectiveness of endwall contouring on two different blades with varying airfoil spacing. Heat transfer experiments on the endwall were also conducted to determine the effect of endwall contouring on surface heat transfer distributions. Heat transfer behavior has significant effect on the cooling flow needs and associated aerodynamic problems of coolant-mainstream mixing. One of the primary objectives of this study is to provide data under transonic conditions that can be used to confirm/refine loss predictions for the effect of various Mach numbers and gas turning. The cascade exit Mach numbers were varied within a range from 0.6 to 1.1. A published experimental study on the effect of end wall contouring on such high turning blades at high exit Mach numbers is not available in open literature. Hence, the need to understand the parametric effects of endwall contouring on aerodynamic and heat transfer performance under these conditions.
- Analysis of Flow and Heat Transfer in the U.S. EPR Heavy ReflectorTakamuku, Kohei (Virginia Tech, 2008-12-05)The U.S. Evolutionary Power Reactor (EPR) is a new, large-scale pressurized water reactor made by AREVA NP Inc. Surrounding the core of this reactor is a steel wall structure sitting inside called the heavy reflector. The purpose of the heavy reflector is to reduce the neutron flux escaping the core and thus increase the efficiency of the reactor while reducing the damage to the structures surrounding the core as well. The heavy reflector is heated due to absorption of the gamma radiation, and this heat is removed by the water flowing through 832 cooling channels drilled through the heavy reflector. In this project, the temperature distribution in the heavy reflector was investigated to ascertain that the maximum temperature does not exceed the allowable temperature of 350 C, with the intent of modifying the flow distribution in the cooling channels to alleviate any hot spots. The analysis was conducted in two steps. First, the flow distribution in the cooling channels was calculated to test for any maldistribution. The temperature distribution in the heavy reflector was then calculated by simulating the conjugate heat transfer with this flow distribution as the coolant input. The turbulent nature of the flow through the cooling channels made the calculation of the flow distribution computationally expensive. In order to resolve this problem, a simplification method using the "equivalent flow resistance" was developed. The method was validated by conducting a few case studies. Using the simplified model, the flow distribution was calculated and was found to be fairly uniform. The conjugate heat transfer calculation was conducted. The same simplification method used in the flow distribution analysis could not be applied to this calculation; therefore, the computational cost of this model was reduced by lowering the grid density in the fluid region. The results showed that the maximum temperature in the heavy reflector is 347.7 C, which is below the maximum allowable temperature of 350 C. Additional studies were conducted to test the sensitivity of the maximum temperature with change in the flow distribution in the cooling channels. Through multiple calculations, the maximum temperature did not drop more than 3 C; therefore, it was concluded that the flow distribution in the cooling channels does not have significant effect on the maximum temperature in the heavy reflector.
- Analysis of Instabilities in Microelectromechanical Systems, and of Local Water SlammingDas, Kaushik (Virginia Tech, 2009-08-24)Arch-shaped microelectromechanical systems (MEMS) have been used as mechanical memories, micro-sensors, micro-actuators, and micro-valves. A bi-stable structure, such as an arch, is characterized by a multivalued load deflection curve. Here we study the symmetry breaking, the snap-through instability, and the pull-in instability of bi-stable arch shaped MEMS under steady and transient electric loads. We analyze transient finite electroelastodynamic deformations of perfect electrically conducting clamped-clamped beams and arches suspended over a flat rigid semi-infinite perfect conductor. The coupled nonlinear partial differential equations (PDEs) for mechanical deformations are solved numerically by the finite element method (FEM) and those for the electrical problem by the boundary element method. The coupled nonlinear PDE governing transient deformations of the arch based on the Euler-Bernoulli beam theory is solved numerically using the Galerkin method, mode shapes for a beam as basis functions, and integrated numerically with respect to time. For the static problem, the displacement control and the pseudo-arc length continuation (PALC) methods are used to obtain the bifurcation curve of arch's deflection versus the electric potential. The displacement control method fails to compute arch's asymmetric deformations that are found by the PALC method. For the dynamic problem, two distinct mechanisms of the snap-through instability are found. It is shown that critical loads and geometric parameters for instabilities of an arch with and without the consideration of mechanical inertia effects are quite different. A phase diagram between a critical load parameter and the arch height is constructed to delineate different regions of instabilities. The local water slamming refers to the impact of a part of a ship hull on stationary water for a short duration during which high local pressures occur. We simulate slamming impact of rigid and deformable hull bottom panels by using the coupled Lagrangian and Eulerian formulation in the commercial FE software LS-DYNA. The Lagrangian formulation is used to describe planestrain deformations of the wedge and the Eulerian description of motion for deformations of the water. A penalty contact algorithm couples the wedge with the water surface. Damage and delamination induced, respectively, in a fiber reinforced composite panel and a sandwich composite panel and due to hydroelastic pressure are studied.
- Analysis of Kolmogorov flow and Rayleigh-Benard convection using persistent homologyKramar, Miroslav; Levanger, Rachel; Tithof, Jeffrey; Suri, Balachandra; Xu, Mu; Paul, Mark R.; Schatz, Michael F.; Mischaikow, Konstantin (Elsevier, 2016-11-01)We use persistent homology to build a quantitative understanding of large complex systems that are driven far-from-equilibrium. In particular, we analyze image time series of flow field patterns from numerical simulations of two important problems in fluid dynamics: Kolmogorov flow and Rayleigh–Bénard convection. For each image we compute a persistence diagram to yield a reduced description of the flow field; by applying different metrics to the space of persistence diagrams, we relate characteristic features in persistence diagrams to the geometry of the corresponding flow patterns. We also examine the dynamics of the flow patterns by a second application of persistent homology to the time series of persistence diagrams. We demonstrate that persistent homology provides an effective method both for quotienting out symmetries in families of solutions and for identifying multiscale recurrent dynamics. Our approach is quite general and it is anticipated to be applicable to a broad range of open problems exhibiting complex spatio-temporal behavior.
- Analysis, Simulation and Control of Peak Pressure Loads on Low-Rise StructuresBen Ayed, Samah (Virginia Tech, 2013-07-30)Wind storms pose dangerous threats to human lives and are an enormous drain on the economy. Their damage to buildings usually starts with the failure of structural components that are subjected to excessive wind loads. In this dissertation, we investigate the characteristics of extreme loads on low-rise structures through analysis of full-scale and numerical data. We also use numerical simulations to evaluate different approaches to control the separated flow over a surface-mounted prism with the objective of reducing extreme pressure coefficients or loads on its surface. In the first part, we use a probabilistic approach to characterize peak loads as measured on a subject house during Hurricane Ivan on 2004. Time series of pressure coefficients collected on the roof of that house are analyzed. Rather than using peak values, which could vary due to the stochastic nature of the data, a probabilistic analysis is used to determine the probability of non-exceedence of specific values of pressure coefficients and associated wind loads. The results show that the time series of the pressure coefficients follow a three-parameter Gamma distribution, while the peak pressure follows a two-parameter Gumbel distribution. The results of the analysis are contrasted with the design values. In the second part, we perform numerical simulations of the flow over a surface-mounted prism as a simplified example for the flow over a low-rise structure. A Direct Numerical Simulation (DNS) code is developed to solve the unsteady two-dimensional incompressible Navier-Stokes equations of the flow past the prism. The pressure coefficients are then computed on the prism surface in order to assess the wind loads. The code is written on a parallel platform using the Message Passing Interface (MPI) library. We use the simulations to study the effects of inflow disturbances on the extreme loads on structures. The sensitivities of peak loads on a surface mounted prism to variations in incident gust parameters are determined. Latin Hypercube Sampling (LHS) is applied to obtain different combinations of inflow parameters. A non-intrusive polynomial chaos expansion is then applied to determine the sensitivities. The results show that the gust enhances the destabilization of the separation shear layer, forces it to break down and moves it closer to the roof of the prism. As for the sensitivities, the results show that the extreme loads are most sensitive to the transverse amplitude of the disturbance. Because the separated flow over sharp edges is responsible for the extreme pressure peaks, we investigate the use of active and passive control strategies to reduce wind loads. The studied active flow control strategies include blowing, suction, and synthetic jets. We implement them by using different flux injections, different slot locations and different angles. Investigation of the possible peak pressure reduction for two Reynolds numbers is performed. For Re = 1000, a reduction by nearly 50% of the peak pressure is obtained. For Re = 10, 000, the highest achieved reduction is nearly 25%. For passive control, we mount a flexible membrane on the top of the prism. In a two-dimensional framework, the membrane equation is modeled by a forced string equation. This mechanical equation is coupled with the DNS solver and integrated in time using a fourth order Hamming predictor corrector scheme. The results show that this strategy is as efficient as the active control approach, in terms of reducing extreme loads, for Re = 10, 000.
- Analytical and Computational Tools for the Study of Grazing Bifurcations of Periodic Orbits and Invariant ToriThota, Phanikrishna (Virginia Tech, 2007-02-02)The objective of this dissertation is to develop theoretical and computational tools for the study of qualitative changes in the dynamics of systems with discontinuities, also known as nonsmooth or hybrid dynamical systems, under parameter variations. Accordingly, this dissertation is divided into two parts. The analytical section of this dissertation discusses mathematical tools for the analysis of hybrid dynamical systems and their application to a series of model examples. Specifically, qualitative changes in the system dynamics from a nonimpacting to an impacting motion, referred to as grazing bifurcations, are studied in oscillators where the discontinuities are caused by impacts. Here, the study emphasizes the formulation of conditions for the persistence of a steady state motion in the immediate vicinity of periodic and quasiperiodic grazing trajectories in an impacting mechanical system. A local analysis based on the discontinuity-mapping approach is employed to derive a normal-form description of the dynamics near a grazing trajectory. Also, the results obtained using the discontinuity-mapping approach and direct numerical integration are found to be in good agreement. It is found that the instabilities caused by the presence of the square-root singularity in the normal-form description affect the grazing bifurcation scenario differently depending on the relative dimensionality of the state space and the steady state motion at the grazing contact. The computational section presents the structure and applications of a software program, TC-HAT, developed to study the bifurcation analysis of hybrid dynamical systems. Here, we present a general boundary value problem (BVP) approach to locate periodic trajectories corresponding to a hybrid dynamical system under parameter variations. A methodology to compute the eigenvalues of periodic trajectories when using the BVP formulation is illustrated using a model example. Finally, bifurcation analysis of four model hybrid dynamical systems is performed using TC-HAT.
- Artificial Anisotropy for Transverse Thermoelectric Heat Flux SensingDerryberry, Rebekah Ann (Virginia Tech, 2007-04-05)Thermoelectric phenomenon describes the relationship between the flow of heat and electricity. Two main categories encompassed in thermoelectric theory are the Seebeck and Peltier effects. The Seebeck effect is the generation of a voltage in a device that consists of two different materials in the presence of a temperature gradient, while the Peltier effect is the generation of a temperature gradient across a device of two different materials in the presence of an electrical current. This project focuses on the first of these two phenomena, where the Seebeck effect is used in a novel heat flux sensor that is transverse in nature. Transverse thermoelectric devices are characterized by their anisotropy, meaning that a temperature gradient generated across a device will be perpendicular to the flow of electricity through the device. This orthogonal arrangement allows for the manipulation of material properties, device arrangement, and construction methods for device optimization. This project characterizes the heat flux sensing capabilities of an artificially anisotropic transverse thermoelectric device via experimental and theoretical methods. The device tested is constructed out of bismuth telluride and titanium grade 5. Bismuth telluride is a standard thermoelectric material, while the titanium is used because of its high melting point and good electrical conductivity. The device is constructed by alternating rectangular pieces of these two materials. These pieces are bonded together at a given angle to simulate anisotropy. Several devices are constructed in a range of angles from 59 to 88°. These devices are each tested in a vacuum chamber where a heater heats one side of the device. This heat flux into the device creates a temperature gradient across the device and the device generates a voltage perpendicular to this temperature gradient. Steady state data are collected for both the temperature difference between the two sides of the device and the voltage generated by the device. This procedure is repeated on each device for a range of heat fluxes from 0 to 2.6 W/cm². This range generates voltage signals up to 14341 µV for an angle of 59°. Data collected are then used to generate a linear trend line that describes the devices response to a given heat flux. These experimental results are compared to theoretical predictions using thermoelectric theory. The results indicate that the device does exhibit transverse thermoelectric characteristics and the experimental data follow the predicted trends. This thesis documents the process of constructing, testing, and analyzing this device.
- Atmospheric Lagrangian transport structures and their applications to aerobiologyBozorg Magham, Amir Ebrahim (Virginia Tech, 2014-02-21)Exploring the concepts of long range aerial transport of microorganisms is the main motivation of this study. For this purpose we use theories and concepts of dynamical systems in the context of geophysical fluid systems. We apply powerful notions such as finite-time Lyapunov exponent (FTLE) and the associated Lagrangian coherent structures (LCS) and we attempt to provide mathematical explanations and frameworks for some applied questions which are based on realistic concerns of atmospheric transport phenomena. Accordingly, we quantify the accuracy of prediction of FTLE-LCS features and we determine the sensitivity of such predictions to forecasting parameters. In addition, we consider the spatiotemporal resolution of the operational data sets and we propose the concept of probabilistic source and destination regions which leads to the definition of stochastic FTLE fields. Moreover, we put forward the idea of using ensemble forecasting to quantify the uncertainty of the forecast results. Finally, we investigate the statistical properties of localized measurements of atmospheric microbial structure and their connections to the concept of local FTLE time-series. Results of this study would pave the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans.
- Bacteria-Enabled Autonomous Drug Delivery Systems: Design, Modeling, and Characterization of Transport and SensingTraore, Mahama Aziz (Virginia Tech, 2014-06-25)The lack of efficacy of existing chemotherapeutic treatments of solid tumors is partially attributed to the limited diffusion distance of therapeutics and the low selectivity of anti-cancer drugs with respect to cancerous tissue, which also leads to high levels of systemic toxicity in patients. Thus, chemotherapy can be enhanced through improving anti-cancer drug carrier selectivity and transport properties. Several strains of gram positive (e.g. Clostridium and Bifidobacterium) and gram-negative (e.g. Salmonella Typhimurium and Escherichia coli) bacteria have been shown to possess the innate ability to preferentially colonize tumor tissues. The overall goal of this dissertation is to characterize the transport and sensing of Bacteria-Enabled Drug Delivery Systems (BEADS) in select relevant environments and to investigate the associated underlying principles. BEADS consist of an engineered abiotic load (i.e. drug-laden micro or nano-particles) and a living component (i.e. bacteria) for sensing and actuation purposes. Findings of this dissertation work are culminated in experimental demonstration of deeper penetration of the NanoBEADS within tumor tissue when compared to passively diffusing chemotherapeutic nanoparticles. Lastly, the transport mechanisms that Salmonella Typhimurium VNP20009 utilize to preferentially colonize solid tumors are also examined with the ultimate goal of engineering intelligent and more efficacious drug delivery vehicles for cancer therapy.
- Bilayer Network ModelingCreasy, Miles Austin (Virginia Tech, 2011-08-08)This dissertation presents the development of a modeling scheme that is developed to model the membrane potentials and ion currents through a bilayer network system. The modeling platform builds off of work performed by Hodgkin and Huxley in modeling cell membrane potentials and ion currents with electrical circuits. This modeling platform is built specifically for cell mimics where individual aqueous volumes are separated by single bilayers like the droplet-interface-bilayer. Applied potentials in one of the aqueous volumes will propagate through the system creating membrane potentials across the bilayers of the system and ion currents through the membranes when proteins are incorporated to form pores or channels within the bilayers. The model design allows the system to be divided into individual nodes of single bilayers. The conductance properties of the proteins embedded within these bilayers are modeled and a finite element analysis scheme is used to form the system equations for all of the nodes. The system equation can be solved for the membrane potentials through the network and then solve for the ion currents through individual membranes in the system. A major part of this work is modeling the conductance of the proteins embedded within the bilayers. Some proteins embedded in bilayers open pores and channels through the bilayer in response to specific stimuli and allow ion currents to flow from one aqueous volume to an adjacent volume. Modeling examples of the conductance behavior of specific proteins are presented. The examples demonstrate aggregate conductance behavior of multiple embedded proteins in a single bilayer, and at examples where few proteins are embedded in the bilayer and the conductance comes from a single-channel or pore. The effect of ion gradients on the single channel conductance example is explored and those effects are included in the single-channel conductance model. Ultimately these conductance models are used with the system model to predict ion currents through a bilayer or through part of a bilayer network system. These modeling efforts provide a modeling tool that will assist engineers in designing bilayer network systems.
- Bioconvection in spatially extended domainsKarimi, A.; Paul, Mark R. (American Physical Society, 2013-05-22)We numerically explore gyrotactic bioconvection in large spatially extended domains of finite depth using parameter values from available experiments with the unicellular alga Chlamydomonas nivalis. We numerically integrate the three-dimensional, time-dependent continuum model of Pedley using a high-order, parallel, spectral-element approach. We explore the long-time nonlinear patterns and dynamics found for layers with an aspect ratio of 10 over a range of Rayleigh numbers. Our results yield the pattern wavelength and pattern dynamics which we compare with available theory and experimental measurement. There is good agreement for the pattern wavelength at short times between numerics, experiment, and a linear stability analysis. At long times we find that the general sequence of patterns given by the nonlinear evolution of the governing equations correspond qualitatively to what has been described experimentally. However, at long times the patterns in numerics grow to larger wavelengths, in contrast to what is observed in experiment where the wavelength is found to decrease with time. © 2013 American Physical Society.
- Biological Ion Transporters as Gating Devices for Chemomechanical and Chemoelectrical Energy ConversionSundaresan, Vishnu Baba (Virginia Tech, 2007-05-15)This dissertation presents a new class of engineered devices, fabricated from synthetic materials and protein transporters extracted from cell membranes of plants, that use chemomechanical and chemoelectrical energy conversion processes to perform mechanical and electrical work. The chemomechanical energy conversion concept is implemented in a protein based actuator. The chemical energy is applied as an electrochemical gradient of protons across a membrane assembly formed from phospholipids and SUT4 -a proton-sucrose cotransporter. The membrane assembly forms a physical barrier between two chambers in the actuator. The SUT4 proteins in the membrane assembly balances the applied electrochemical gradient by a concentration gradient of sucrose across the membrane. The sucrose gradient simultaneously generates an osmotic flow which deforms a flexible wall in a constrained chamber of the actuator, thus exhibiting mechanical strain. The sucrose concentration balanced by the protein transporter is used as the control variable for fluid flow through the membrane. The transport properties of the membrane assembly has been characterized for the control variable in the system. The reaction kinetics based model for solute transport through the cotransporter is modified to compute the equilibrium constant for solute binding and fluid translocation rate through the membrane. The maximum initial flux rate through the membrane is computed to be 2.51+/-0.6 ul/ug.cm^2.min for an applied pH4.0/pH7.0 concentration gradient across the membrane. The flux rate can be modulated by varying the sucrose concentration in the actuator. The prototype actuator has been fabricated using the characterized membrane assembly. A maximum deformation of 60microns at steady state is developed by the actuator for 20 mM sucrose concentration in the system. The chemoelectrical energy conversion concept is based on the electrogenic proton pumps in plasma and vacuolar membranes of a plant cell. A prototype device referred to as a BioCell demonstrates the chemoelectric energy conversion using V-type ATPase extracted from plant cell membranes. The enzyme in the bilayer lipid membrane hydrolyzes ATP and converts the chemical energy from the reaction into a charge gradient across the membrane. Silver-silver chloride electrodes on both the sides of the membrane convert the charge established by the proton pumps into cell voltage. The redox reactions at the surface of the electrodes result in a current through the external load connected to the terminals of the BioCell. The single cell behaves like a constant current power source and has an internal resistance of 10-22kOhms. The specific power from the cell of the membrane assembly is estimated to be around 2microwatts/sq/cm. The demonstration of chemoelectrical energy conversion shows the possibility to use ATP as an alternative source of electrical power to design novel chemo-electro-mechanical devices.
- Biomanufacturing of Bacteria-Mediated Drug Delivery Systems and Investigation of Their Interaction with the Tumor MicroenvironmentZhan, Ying (Virginia Tech, 2024-05-14)The limited transport of conventional chemotherapy within the tumor microenvironment (TME) is due to irregular vascularization, increased tumor interstitial pressure, and a dense extracellular matrix (ECM). The lack of selectivity of anticancer drugs often leads to systemic toxicity and damage to healthy tissues. Bacteria-based cancer therapy (BBCT) is a promising alternative, as tumor-targeting bacteria have been shown to preferentially colonize primary and metastatic tumors and induce anti-tumor effects. In this dissertation, we focus on several aspects of bacteria-nanoparticle conjugates, wherein BBCT is synergistically combined with nanomedicine to augment the efficacy of both treatment modalities. We explore biofabrication of our bacteria-nanoparticle conjugates called NanoBEADS (Nanoscale Bacteria Enabled Autonomous Drug Delivery Systems) and their interaction with the TME. Specifically, (1) we investigate the effects of two bacteria-NP conjugation chemistry and assembly process parameters of mixing method, volume, and duration, on NP attachment density and repeatability. We evaluate the influence of linkage chemistry and NP size on NP attachment density, viability, growth rate, and motility of NanoBEADS. (2) We investigate the effect of dense stroma and ECM production on the intratumoral penetration of bacteria with a mathematical model of bacterial intratumoral transport and growth. (3) We develop a microfluidic device with multicellular tumor spheroids to study the transport of tumor-targeting bacteria and support real-time imaging and long-term experiments. (4) We develop a new type of bacteria-based bio-hybrid drug delivery system using engineered cell surface display for enhancing the attachment of nanoparticles.