Biomanufacturing of Bacteria-Mediated Drug Delivery Systems and Investigation of Their Interaction with the Tumor Microenvironment

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The limited transport of conventional chemotherapy within the tumor microenvironment (TME) is due to irregular vascularization, increased tumor interstitial pressure, and a dense extracellular matrix (ECM). The lack of selectivity of anticancer drugs often leads to systemic toxicity and damage to healthy tissues. Bacteria-based cancer therapy (BBCT) is a promising alternative, as tumor-targeting bacteria have been shown to preferentially colonize primary and metastatic tumors and induce anti-tumor effects. In this dissertation, we focus on several aspects of bacteria-nanoparticle conjugates, wherein BBCT is synergistically combined with nanomedicine to augment the efficacy of both treatment modalities. We explore biofabrication of our bacteria-nanoparticle conjugates called NanoBEADS (Nanoscale Bacteria Enabled Autonomous Drug Delivery Systems) and their interaction with the TME. Specifically, (1) we investigate the effects of two bacteria-NP conjugation chemistry and assembly process parameters of mixing method, volume, and duration, on NP attachment density and repeatability. We evaluate the influence of linkage chemistry and NP size on NP attachment density, viability, growth rate, and motility of NanoBEADS. (2) We investigate the effect of dense stroma and ECM production on the intratumoral penetration of bacteria with a mathematical model of bacterial intratumoral transport and growth. (3) We develop a microfluidic device with multicellular tumor spheroids to study the transport of tumor-targeting bacteria and support real-time imaging and long-term experiments. (4) We develop a new type of bacteria-based bio-hybrid drug delivery system using engineered cell surface display for enhancing the attachment of nanoparticles.



Bacteria-based cancer therapy, microenvironment, extracellular matrix, microfluidics