Browsing by Author "Pearce, Sarah C."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Acute heat stress activated inflammatory signaling in porcine oxidative skeletal muscleGanesan, Shanthi; Volodina, Olga; Pearce, Sarah C.; Gabler, Nicholas K.; Baumgard, Lance H.; Rhoads, Robert P.; Selsby, Joshua T. (2017-08)Despite well-studied clinical manifestations, intracellular mechanisms of prolonged hyperthermic injury remain unclear, especially in skeletal muscle. Given muscle's large potential to impact systemic inflammation and metabolism, the response of muscle cells to heat-mediated injury warrants further investigation. We have previously reported increased activation of NF-κB signaling and increased NF-κB and AP-1-driven transcripts in oxidative skeletal muscle following 12 h of heat stress. The purpose of this investigation was to examine early heat stress-induced inflammatory signaling in skeletal muscle. We hypothesized that heat stress would increase NF-κB and AP-1 signaling in oxidative skeletal muscle. To address this hypothesis, 32 gilts were randomly assigned to one of four treatment groups (n = 8/group): control (0 h: 21°C) or exposed to heat stress conditions (37°C) for 2 h (n = 8), 4 h (n = 8), or 6 h (n = 8). Immediately following environmental exposure pigs were euthanized and the red portion of the semitendinosus muscle (STR) was harvested. We found evidence of NF-κB pathway activation as indicated by increased protein abundance of NF-κB activator IKK-α following 4 h and increased total NF-κB protein abundance following 6 h of heat stress. Heat stress also stimulated AP-1 signaling as AP-1 protein abundance was increased in nuclear fractions following 4 h of heat stress. Interleukin-6 protein abundance and activation of the JAK/STAT pathway were decreased in heat stressed muscle. These data indicate that heat stress activated inflammatory signaling in the porcine STR muscle via the AP-1 pathway and early activation of the NF-κB pathway.
- Effects of dairy products on intestinal integrity in heat-stressed pigs.Sanz Fernandez, M. Victoria; Pearce, Sarah C.; Mani, Venkatesh; Gabler, Nicholas K.; Metzger, Lloyd; Patience, John F.; Rhoads, Robert P.; Baumgard, Lance H. (2014-07)Heat stress compromises intestinal integrity which may partially explain its negative effects on animal health and productivity. Research suggests that challenged intestinal barrier function improves with dietary dairy products in various models. Thus, the study objective was to evaluate the effects of bovine milk whey protein (WP) and colostral whey protein (CWP) on intestinal integrity in heat-stressed pigs. Crossbred gilts (39 ± 3 kg body weight) were fed 1 of 4 diets (n = 8 pigs/diet): control (Ct), control diet containing an 80% WP and 20% CWP product (WP80), control diet containing a 98% WP and 2% CWP product (WP98), and control diet containing a 100% WP product (WP100). After 7d on experimental diets, pigs were exposed to constant heat stress conditions (32 °C) for 24h. There were no treatment differences in growth or body temperature indices prior to heat stress. During heat exposure, both rectal temperature and respiration rate increased (+0.85 °C and 3-fold, respectively; P < 0.01), and feed intake and body weight decreased (44% and -0.5kg, respectively; P < 0.01), but neither variable was affected by dietary treatments. Plasma L-lactate and D-lactate concentrations increased (36%; P < 0.01) and tended to increase (19%; P = 0.09) with heat stress. After 24h of heat exposure, WP100-fed pigs had lower plasma D-lactate relative to Ct-fed pigs. Ileal transepithelial electrical resistance was decreased (37%; P = 0.02) in WP80 pigs, compared with controls. No differences were detected in other intestinal integrity ex vivo measurements. These data demonstrate that dietary WP and CWP did not mitigate intestinal integrity dysfunction during severe heat stress.
- Evaluation of digestively resistant or soluble fibers, short- and medium-chain fatty acids, trace minerals, and antibiotics in nonchallenged nursery pigs on performance, digestibility, and intestinal integrityKerr, Brian J.; Trachsel, Julian M.; Bearson, Bradley L.; Loving, Crystal L.; Bearson, Shawn M. D.; Byrne, Kristen A.; Pearce, Sarah C.; Ramirez, Shelby M.; Gabler, Nicholas K.; Schweer, Wesley P.; Helm, Emma T.; De Mille, Carson M. (Oxford University Press, 2022-11)Nonantibiotic in-feed additives have limited effects on performance, nutrient digestibility, and intestinal function when supplemented to diets fed to nursery pigs. Lay Summary In-feed antimicrobials have been an important technology in swine production for protecting health and supporting growth. However, with legislative restrictions on the use of most antibiotics for growth promotion, research is needed to evaluate in-feed additives in replacing this growth promoting technology. Thus, strategies to enhance energy and nutrient digestibility, intestinal function and integrity, gastrointestinal volatile fatty acid concentrations, and microbial ecology in nursery pigs are desirable targets. The results of the three experiments conducted herein do not indicate that supplementing diets with digestively resistant but fermentable fibers, short-medium-chain fatty acids, or antibiotics have a consistent positive or negative effect on markers of intestinal integrity or barrier function, VFA patterns (ileal, cecal, or colon), ATTD of energy and nutrients, or pig performance. Three experiments (EXP) were conducted to determine the effect of feed additives on performance, intestinal integrity, gastrointestinal volatile fatty acids (VFA), and energy and nutrient digestion in nonchallenged nursery pigs. In EXP 1, 480 pigs (6.36-kg body weight, BW) were placed into 96 pens with 5 pigs/pen, and allotted to 1 of 10 dietary treatments: 1) negative control containing no feed additive (NC), 2) NC + 44 mg chlortetracycline and 38.5 mg tiamulin/kg diet (CTsb), 3) NC + 5% resistant potato starch (RSpo), 4) NC + 5% soluble corn fiber (SCF), 5) NC + 5% sugar beet pulp (SBP), 6) NC + 0.30% fatty acid mix (FAM), 7) NC + 0.10% phytogenic blend of essential oils and flavoring compounds (PHY), 8) NC + 50 mg Cu and 1,600 mg zinc oxide/kg diet (CuZn), 9) NC + 5% resistant corn starch (RScn), and 10) NC + 0.05% beta-glucan (BG) for 28 d. There was no impact of dietary treatment on BW gain or feed intake (P >= 0.22). Pigs fed diets containing SCF, CTsb, and RSpo resulted in microbial community differences compared to pigs fed the NC (P < 0.05). In EXP 2, 48 barrows (12.8 kg BW) were selected at the end of EXP 1 and fed the same dietary treatments they had previously received: 1) NC, 2) NC + 5% RScn, 3) NC + 5% SCF, and 4) NC + FAM for 8 d. There was no effect of feeding diets containing RScn, SCF, or FAM on in vivo intestinal permeability (P <= 0.21). Ileal or colon pH, concentrations of VFA did not differ due to dietary treatment (P >= 0.36), but pigs fed diets containing FAM resulted in a greater butyric acid concentration in the cecum compared to pigs fed the NC (P <= 0.05). In EXP 3, 156 pigs (6.11 kg BW) were placed into 52 pens with 3 pigs/pen and allotted to 1 of 4 dietary treatments arranged in a factorial manner: 1) NC, 2) NC + 5% RSpo, 3) NC + 0.30% FAM, and 4) NC + 5% RSpo + 0.30% FAM for 24 d. Feeding pigs diets containing RSpo did not affect BW gain (P = 0.91) while pigs fed diets containing FAM grew improved BW gain (P = 0.09). Colonic butyric acid concentrations were greater in pigs fed diets containing RSpo (P = 0.03), while pigs fed diets containing FAM exhibited reduced total VFA concentrations (P = 0.11). The results indicate that supplementing diets with digestively resistant but fermentable fibers, short- and medium-chain fatty acids, or antibiotics do not have a consistent effect, positive or negative, on markers of intestinal integrity or barrier function, intestinal VFA patterns, ATTD of energy and nutrients, or on pig performance.
- Gestational Heat Stress Alters Postnatal Offspring Body Composition Indices and Metabolic Parameters in PigsBoddicker, Rebecca L.; Seibert, Jacob T.; Johnson, Jay S.; Pearce, Sarah C.; Selsby, Joshua T.; Gabler, Nicholas K.; Lucy, Matthew C.; Safranski, Timothy J.; Rhoads, Robert P.; Baumgard, Lance H.; Ross, Jason W. (PLOS, 2014-11-10)The study objectives were to test the hypothesis that heat stress (HS) during gestational development alters postnatal growth, body composition, and biological response to HS conditions in pigs. To investigate this, 14 first parity crossbred gilts were exposed to one of four environmental treatments (TNTN, TNHS, HSTN, or HSHS) during gestation. TNTN and HSHS dams were exposed to thermal neutral (TN, cyclical 18–22ºC) or HS conditions (cyclical 28–34ºC) during the entire gestation, respectively. Dams assigned to HSTN and TNHS treatments were heat-stressed for the first or second half of gestation, respectively. Postnatal offspring were exposed to one of two thermal environments for an acute (24 h) or chronic (five weeks) duration in either constant TN (21ºC) or HS (35ºC) environment. Exposure to chronic HS during their growth phase resulted in decreased longissimus dorsi cross-sectional area (LDA) in offspring from HSHS and HSTN treated dams whereas LDA was larger in offspring from dams in TNTN and TNHS conditions. Irrespective of HS during prepubertal postnatal growth, pigs from dams that experienced HS during the first half of gestation (HSHS and HSTN) had increased (13.9%) subcutaneous fat thickness compared to pigs from dams exposed to TN conditions during the first half of gestation. This metabolic repartitioning towards increased fat deposition in pigs from dams heat-stressed during the first half of gestation was accompanied by elevated blood insulin concentrations (33%; P = 0.01). Together, these results demonstrate HS during the first half of gestation altered metabolic and body composition parameters during future development and in biological responses to a subsequent HS challenge.
- Heat stress causes dysfunctional autophagy in oxidative skeletal muscleBrownstein, Alexandra J.; Ganesan, Shanthi; Summers, Corey M.; Pearce, Sarah C.; Hale, Benjamin J.; Ross, Jason W.; Gabler, Nicholas K.; Seibert, Jacob T.; Rhoads, Robert P.; Baumgard, Lance H.; Selsby, Joshua T. (The Physiological Society, 2017-06)We have previously established that 24h of environmental hyperthermia causes oxidative stress and have implicated mitochondria as likely contributors to this process. Given this, we hypothesized that heat stress would lead to increased autophagy/mitophagy and a reduction in mitochondrial content. To address this hypothesis pigs were housed in thermoneutral (TN; 20 degrees C) or heat stress (35 degrees C) conditions for 1- (HS1) or 3- (HS3) days and the red and white portions of the semitendinosus collected. We did not detect differences in glycolytic muscle. Counter to our hypothesis, upstream activation of autophagy was largely similar between groups as were markers of autophagosome nucleation and elongation. LC3A/B-I increased 1.6-fold in HS1 and HS3 compared to TN (P < 0.05), LC3A/B-II was increased 4.1-fold in HS1 and 4.8-fold in HS3 relative to TN, (P < 0.05) and the LC3A/B-II/I ratio was increased 3-fold in HS1 and HS3 compared to TN suggesting an accumulation of autophagosomes. p62 was dramatically increased in HS1 and HS3 compared to TN. Heat stress decreased mitophagy markers PINK1 7.0-fold in HS1 (P < 0.05) and numerically by 2.4-fold in HS3 compared to TN and BNIP3L/NIX by 2.5-fold (P < 0.05) in HS1 and HS3. Markers of mitochondrial content were largely increased without activation of PGC-1 signaling. In total, these data suggest heat-stress-mediated suppression of activation of autophagy and autophagosomal degradation, which may enable the persistence of damaged mitochondria in muscle cells and promote a dysfunctional intracellular environment.
- Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscleMontilla, Sandra I. Rosado; Johnson, Theresa P.; Pearce, Sarah C.; Gardan-Salmon, Delphine; Gabler, Nicholas K.; Ross, Jason W.; Rhoads, Robert P.; Baumgard, Lance H.; Lonergan, Steven M.; Selsby, Joshua T. (2014-04)Heat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat stress disrupted redox balance and initiated an inflammatory response in oxidative and glycolytic skeletal muscle. Female pigs (5-6/group) were subjected to thermoneutral (20 °C) or heat stress (35 °C) conditions for 1 or 3 days and the semitendinosus removed and dissected into red (STR) and white (STW) portions. After 1 day of heat stress, relative abundance of proteins modified by malondialdehyde, a measure of oxidative damage, was increased 2.5-fold (P < 0.05) compared with thermoneutral in the STR but not the STW, before returning to thermoneutral conditions following 3 days of heat stress. This corresponded with increased catalase and superoxide dismutase-1 gene expression (P < 0.05) and superoxide dismutase-1 protein abundance (P < 0.05) in the STR but not the STW. In the STR catalase and total superoxide dismutase activity were increased by ~30% and ~130%, respectively (P < 0.05), after 1 day of heat stress and returned to thermoneutral levels by day 3. One or 3 days of heat stress did not increase inflammatory signaling through the NF-κB pathway in the STR or STW. These data suggest that oxidative muscle is more susceptible to heat stress-mediated changes in redox balance than glycolytic muscle during chronic heat stress.
- Heat Stress Reduces Intestinal Barrier Integrity and Favors Intestinal Glucose Transport in Growing PigsPearce, Sarah C.; Mani, Venkatesh; Boddicker, Rebecca L.; Johnson, Jay S.; Weber, Thomas E.; Ross, Jason W.; Rhoads, Robert P.; Baumgard, Lance H.; Gabler, Nicholas K. (PLOS, 2013-08-01)Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35–50% humidity; n = 8) or HS conditions (35°C; 24–43% humidity; n = 8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P,0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P<0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-a (P = 0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P,0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na+/K+ ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P=0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport.
- Short-term heat stress alters redox balance in porcine skeletal muscleVolodina, Olga; Ganesan, Shanthi; Pearce, Sarah C.; Gabler, Nicholas K.; Baumgard, Lance H.; Rhoads, Robert P.; Selsby, Joshua T. (The Physiological Society, 2017-04)Heat stress contributes to higher morbidity and mortality in humans and animals and is an agricultural economic challenge because it reduces livestock productivity. Redox balance and associated mitochondrial responses appear to play a central role in heat stress-induced skeletal muscle pathology. We have previously reported increased oxidative stress and mitochondrial content in oxidative muscle following 12h of heat stress. The purposes of this investigation were to characterize heat stress-induced oxidative stress and changes in mitochondrial content and biogenic signaling in oxidative skeletal muscle. Crossbred gilts were randomly assigned to either thermal neutral (21 degrees C; n=8, control group) or heat stress (37 degrees C) conditions for 2h (n=8), 4h (n=8), or 6h (n=8). At the end, their respective environmental exposure, the red portion of the semitendinosus muscle (STR) was harvested. Heat stress increased concentration of malondialdehyde (MDA) following 2 and 4h compared to thermal neutral and 6h, which was similar to thermal neutral, and decreased linearly with time. Protein carbonyl content was not influenced by environment. Catalase activity was increased following 4h of heat stress and superoxide dismutase activity was decreased following 6h of heat stress compared to thermal neutral conditions. Heat stress-mediated changes in antioxidant activity were independent of altered protein abundance or transcript expression. Mitochondrial content and mitochondrial biogenic signaling were similar between groups. These data demonstrate that heat stress caused a transient increase in oxidative stress that was countered by a compensatory change in catalase activity. These findings contribute to our growing understanding of the chronology of heat stress-induced intracellular dysfunctions in skeletal muscle.