Short-term heat stress alters redox balance in porcine skeletal muscle


TR Number



Journal Title

Journal ISSN

Volume Title


The Physiological Society


Heat stress contributes to higher morbidity and mortality in humans and animals and is an agricultural economic challenge because it reduces livestock productivity. Redox balance and associated mitochondrial responses appear to play a central role in heat stress-induced skeletal muscle pathology. We have previously reported increased oxidative stress and mitochondrial content in oxidative muscle following 12h of heat stress. The purposes of this investigation were to characterize heat stress-induced oxidative stress and changes in mitochondrial content and biogenic signaling in oxidative skeletal muscle. Crossbred gilts were randomly assigned to either thermal neutral (21 degrees C; n=8, control group) or heat stress (37 degrees C) conditions for 2h (n=8), 4h (n=8), or 6h (n=8). At the end, their respective environmental exposure, the red portion of the semitendinosus muscle (STR) was harvested. Heat stress increased concentration of malondialdehyde (MDA) following 2 and 4h compared to thermal neutral and 6h, which was similar to thermal neutral, and decreased linearly with time. Protein carbonyl content was not influenced by environment. Catalase activity was increased following 4h of heat stress and superoxide dismutase activity was decreased following 6h of heat stress compared to thermal neutral conditions. Heat stress-mediated changes in antioxidant activity were independent of altered protein abundance or transcript expression. Mitochondrial content and mitochondrial biogenic signaling were similar between groups. These data demonstrate that heat stress caused a transient increase in oxidative stress that was countered by a compensatory change in catalase activity. These findings contribute to our growing understanding of the chronology of heat stress-induced intracellular dysfunctions in skeletal muscle.



Heat stroke, hyperthermia, mitochondria, oxidative stress, pig