Browsing by Author "Rakha, Hesham A."
Now showing 1 - 20 of 189
Results Per Page
Sort Options
- Access Control Design on Highway InterchangesRakha, Hesham A.; Flintsch, Alejandra Medina; Arafeh, Mazen; Abdel-Salam, Abdel-Salam Gomaa; Dua, Dhruv; Abbas, Montasir M. (Virginia Center for Transportation Innovation and Research, 2008-01-01)The adequate spacing and design of access to crossroads in the vicinity of freeway ramps are critical to the safety and traffic operations of both the freeway and the crossroad. The research presented in this report develops a methodology to evaluate the safety impact of different access road spacing standards. The results clearly demonstrate the shortcomings of the AASHTO standards and the benefits of enhancing them. The models developed as part of this research were used to compute the crash rate associated with alternative section spacing. The study demonstrates that the models satisfied the statistical requirements and provide reasonable crash estimates. The results demonstrate an eight-fold decrease in the crash rate when the access road spacing increases from 0 to 300 m. An increase in the minimum spacing from 90 m (300 ft) to 180 m (600 ft) results in a 50 percent reduction in the crash rate. The models were used to develop lookup tables that quantify the impact of access road spacing on the expected number of crashes per unit distance. The tables demonstrate a decrease in the crash rate as the access road spacing increases. An attempt was made to quantify the safety cost of alternative access road spacing using a weighted average crash cost. The weighted average crash cost was computed considering that 0.6, 34.8, and 64.6 percent of the crashes were fatal, injury, and property damage crashes, respectively. These proportions were generated from the field observed data. The cost of each of these crashes was provided by VDOT as $3,760,000, $48,200, and $6,500 for fatal, injury, and property damage crashes, respectively. This provided an average weighted crash cost of $43,533. This average cost was multiplied by the number of crashes per mile to compute the cost associated with different access spacing scenarios. These costs can assist policy makers in quantifying the trade-offs of different access management regulations.
- Accounting for Risk and Level of Service in the Design of Passing Sight DistancesEl Khoury, John (Virginia Tech, 2005-11-28)Current design methods in transportation engineering do not simultaneously address the levels of risk and service associated with the design and use of various highway geometric elements. Passing sight distance (PSD) is an example of a geometric element designed with no risk measures. PSD is provided to ensure the safety of passing maneuvers on two-lane roads. Many variables decide the minimum length required for a safe passing maneuver. These are random variables and represent a wide range of human and vehicle characteristics. Also, current PSD design practices replace these random variables by single-value means in the calculation process, disregarding their inherent variations. The research focuses on three main objectives. The first goal is to derive a PSD distribution that accounts for the variations in the contributing parameters. Two models are devised for this purpose, a Monte-Carlo simulation model and a closed form analytical estimation model. The results of both models verify each other and differ by less than 5 percent. Using the PSD distribution, the reliability index of the current PSD criteria are assessed. The second goal is to attach risk indices to the various PSD lengths of the obtained distribution. A unique microscopic simulation is devised to replicate passing maneuvers on two-lane roads. Using the simulation results, the author is able to assess the risk of various PSD lengths for a specific design speed. The risk index of the AASHTO Green Book and the MUTCD PSD standards are also obtained using simulation. With risk measures attached to the PSD lengths, a trade-off analysis between the level of service and risk is feasible to accomplish. The last task is concerned with applying the Highway Capacity Manual concepts to assessing the service measures of the different PSD lengths. The results of the final trade-off analysis show that for a design speed of 50 mph, the AASHTO Green Book and the MUTCD standards overestimate the PSD requirements. The criteria can be reduced to 725 ft and still be within an acceptable risk level.
- Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter ControlElouni, Maha; Abdelghaffar, Hossam M.; Rakha, Hesham A. (MDPI, 2021-01-03)This paper compares the operation of a decentralized Nash bargaining traffic signal controller (DNB) to the operation of state-of-the-art adaptive and gating traffic signal control. Perimeter control (gating), based on the network fundamental diagram (NFD), was applied on the borders of a protected urban network (PN) to prevent and/or disperse traffic congestion. The operation of gating control and local adaptive controllers was compared to the operation of the developed DNB traffic signal controller. The controllers were implemented and their performance assessed on a grid network in the INTEGRATION microscopic simulation software. The results show that the DNB controller, although not designed to solve perimeter control problems, successfully prevents congestion from building inside the PN and improves the performance of the entire network. Specifically, the DNB controller outperforms both gating and non-gating controllers, with reductions in the average travel time ranging between 21% and 41%, total delay ranging between 40% and 55%, and emission levels/fuel consumption ranging between 12% and 20%. The results demonstrate statistically significant benefits of using the developed DNB controller over other state-of-the-art centralized and decentralized gating/adaptive traffic signal controllers.
- AERIS : Eco-Vehicle Speed Control at Signalized Intersections Using I2V CommunicationRakha, Hesham A.; Kamalanathsharma, Raj Kishore; Ahn, Kyoungho (United States. Joint Program Office for Intelligent Transportation Systems, 2012-06)This report concentrates on a velocity advisory tool, or decision support system, for vehicles approaching an intersection using communication capabilities between the infrastructure and vehicles. The system uses available signal change information, vehicle characteristics, lead vehicle characteristics, and intersection features to compute the fuel-optimal vehicle trajectory. The proposed system involves a complex optimization logic incorporating roadway characteristics, lead vehicle information, vehicle acceleration capabilities and microscopic fuel consumption models to generate a fuel-optimal speed profile. The research also develops a MATLAB application in order to demonstrate the potential of an in-vehicle application of such a technology.
- AERIS: Eco-driving Application Development and TestingRakha, Hesham A.; Ahn, Kyoungho; Park, Sangjun (United States. Department of Transportation. Research and Innovative Technology Administration, 2012-06)This exploratory study investigates the potential of developing an Eco-Driving application that utilizes an eco-cruise control (ECC) system within state-of-the-art car-following models. The research focuses on integrating predictive cruise control and optimal vehicle acceleration and deceleration controllers within car-following models to minimize vehicle fuel consumption levels. This system makes use of topographic information, spacing to lead vehicle, and a desired (or target) vehicle speed and distance headway as input variables.
- Agent-Based Game Theory Modeling for Driverless Vehicles at IntersectionsRakha, Hesham A.; Zohdy, Ismail H.; Kamalanathsharma, Raj Kishore (United States. Department of Transportation, 2013-02-19)This report presents three research efforts that were published in various journals. The first research effort presents a reactive-driving agent based algorithm for modeling driver left turn gap acceptance behavior at signalized intersections. This model considers the interaction between driver characteristics and vehicle physical capabilities. The model explicitly captures the vehicle constraints on driving behavior using a vehicle dynamics model. In addition, the model uses the driver's input and the psychological deliberation in accepting/rejecting a gap. The model is developed using a total of 301 accepted gaps and subsequently validated using 2,429 rejected gaps at the same site and also validated using 1,485 gap decisions (323 accepted and 1,162 rejected) at another site. The proposed model is considered as a mix between traditional and reactive methods for decision making and consists of three main components: input, data processing and output. The input component uses sensing information, vehicle and driver characteristics to process the data and estimate the critical gap value. Thereafter, the agent decides to either accept or reject the offered gap by comparing to a driver-specific critical gap (the offered gap should be greater than the critical gap for it to be accepted). The results demonstrate that the agent-based model is superior to the standard logistic regression model because it produces consistent performance for accepted and rejected gaps (correct predictions in 90% of the observations) and the model is easily transferable to different sites. The proposed modeling framework can be generalized to capture different vehicle types, roadway configurations, traffic movements, intersection characteristics, and weather effects on driver gap acceptance behavior. The findings of this research effort is considered as an essential stage for modeling autonomous/driverless vehicles The second effort develops a heuristic optimization algorithm for automated vehicles (equipped with cooperative adaptive cruise control CACC systems) at uncontrolled intersections using a game theory framework. The proposed system models the automated vehicles as reactive agents interacting and collaborating with the intersection controller (manager agent) to minimize the total delay. The system is evaluated using a case study considering two different intersection control scenarios: a four-way stop control and the proposed intersection controller framework. In both scenarios, four automated vehicles (a single vehicle per approach) were simulated using a Monte Carlo simulation that was repeated 1000 times. The results show that the proposed system reduces the total delay relative to a traditional stop control by 35 seconds on average, which corresponds to an approximately 70 percent reduction in the total delay. The third effort presents a new tool for optimizing the movements of autonomous/driverless vehicles through intersections: iCACC. The main concept of the proposed tool is to control vehicle trajectories using Cooperative Adaptive Cruise Control (CACC) systems to avoid collisions and minimize intersection delay. Simulations were executed to compare conventional signal control with iCACC considering two measures of effectiveness - delay and fuel consumption. Savings in delay and fuel consumption in the range of 91 and 82 percent relative to conventional signal control were demonstrated, respectively. It is anticipated that the findings of this report may contribute in the future of advanced vehicles control and connected vehicles applications.
- An Agent-based Travel Demand Model System for Hurricane Evacuation SimulationYin, Weihao (Virginia Tech, 2013-11-20)This dissertation investigates the evacuees' behavior under hurricane evacuation conditions and develops an agent-based travel demand model system for hurricane evacuation simulation using these behavioral findings. The dissertation econometrically models several important evacuation decisions including evacuate-stay, accommodation type choice, evacuation destination choice, evacuation mode choice, departure time choice, and vehicle usage choice. In addition, it explicitly considers the pre-evacuation preparation activities using activity-based approach. The models are then integrated into a two-module agent-based travel demand model system. The dissertation first develops the evacuate-stay choice model using the random-coefficient binary logit specification. It uses heterogeneous mean of the random parameter across households to capture shadow evacuation. It is found that the likelihood of evacuation for households that do not receive any evacuation notice decreases as their distance to coast increase on average. The distance sensitivity factor, or DSF, is introduced to construct the different scenarios of geographical extent of shadow evacuation. The dissertation then conducts statistical analysis of the vehicle usage choice. It identifies the contributing factors to households' choice of the number of vehicles used for evacuation and develop predictive models of this choice that explicitly consider the constraint imposed by the number of vehicles owned by the household. This constraint is not accommodated by ordered response models. Data comes from a post-storm survey for Hurricane Ivan. The two models developed are variants of the regular Poisson regression model: the Poisson model with exposure and right-censored Poisson regression. The right-censored Poisson model is preferred due to its inherent capabilities, better fit to the data, and superior predictive power. The multivariable model and individual variable analyses are used to investigate seven hypotheses. Households traveling longer distances or evacuating later are more likely to use fewer vehicles. Households with prior hurricane experience, greater numbers of household members between 18 and 80, and pet owners are more likely to use a greater number of vehicles. Income and distance from the coast are insignificant in the multivariable models, although their individual effects have statistically significant linear relationship. However, the Poisson based models are non-linear. The method for using the right-censored Poisson model for producing the desired share of vehicle usage is also provided for the purpose of generating individual predictions for simulation. The dissertation then presents a descriptive analysis of and econometric models for households' pre-evacuation activities based on behavioral intention data collected for Miami Beach, Florida. The descriptive analysis shows that shopping - particularly food, gasoline, medicine, and cash withdrawal - accounts for the majority of preparation activities, highlighting the importance of maintaining a supply of these items. More than 90% of the tours are conducted by driving, emphasizing the need to incorporate pre-evacuation activity travel into simulation studies. Households perform their preparation activities early in a temporally concentrated manner and generally make the tours during daylight. Households with college graduates, larger households, and households who drive their own vehicles are more likely to engage in activities that require travel. The number of household members older than 64 has a negative impact upon engaging in out-of-home activities. An action day choice model for the first tour suggests that households are more likely to buy medicine early but are more likely to pick up friends/relatives late. Households evacuating late are more likely to conduct their activities late. Households with multiple tours tend to make their first tour early. About 10% of households chain their single activity chains with their ultimate evacuation trips. The outcomes of this paper can be used in demand generation for traffic simulations. The dissertation finally uses the behavioral findings and develops an agent-based travel demand model system for hurricane evacuation simulation, which is capable of generating the comprehensive household activity-travel plans. The system implements econometric and statistical models that represent travel and decision-making behavior throughout the evacuation process. The system considers six typical evacuation decisions: evacuate-stay, accommodation type choice, evacuation destination choice, mode choice, vehicle usage choice and departure time choice. It explicitly captures the shadow evacuation population. In addition, the model system captures the pre-evacuation preparation activities using an activity-based approach. A demonstration study that predicts activity-travel patterns using model parameters estimated for the Miami-Dade area is discussed. The simulation results clearly indicate the model system produced the distribution of choice patterns that is consistent with sample observations and existing literature. The model system also identifies the proportion of the shadow evacuation population and their geographical extent. About 23% of the population outside the designated evacuation zone would evacuate. The shadow evacuation demand is mainly located within 3.1 miles (5 km) of the coastline. The output demand of the model system works with agent-based traffic simulation tools and conventional trip-based simulation tools. The agent-based travel demand model system is capable of generating activity plans that works with agent-based traffic simulation tools and conventional trip-based simulation tools. It will facilitate the hurricane evacuation management.
- Alternative Methodology To Household Activity Matching In TRANSIMSParadkar, Rajan (Virginia Tech, 2001-06-15)TRANSIMS (Transportation Analysis and Simulation System) developed at the Los Alamos National Laboratory, is an integrated system of travel forecasting models designed to give transportation planners accurate and complete information on traffic impacts, congestion, and pollution. TRANSIMS is a micro-simulation model which uses census data to generate a synthetic population and assigns activities using activity survey data to each person of every household of the synthetic population. The synthetic households generated from the census data are matched with the survey households based on their demographic characteristics. The activities of the survey household individuals are then assigned to the individuals of the matched synthetic households. The CART algorithm is used to match the households. With the use of CART algorithm a classification tree is built for the activity survey households based on some dependent and independent variables from the demographic data. The TRANSIMS model assumes activity times as dependent variables for building the classification tree. The topic of this research is to compare the TRANSIMS approach of using times spent in executing the activities as dependent variables, compared to match the alternative of using travel times for trips between activities as dependent variables i.e. to use the travel time pattern instead of activity time pattern to match the persons in the survey households with the synthetic households. Thus assuming that if the travel time patterns are the same then we can match the survey households to the synthetic population i.e. people with similar demographic characteristics tend to have similar travel time patterns. The algorithm of the Activity Generator module along with the original set of dependent variables, were first used to generate a base case scenario. Further tests were carried out using an alternative set of dependent variables in the algorithm. A sensitivity analysis was also carried out to test the affect of different sets of dependent variables in generating activities using the algorithm of the Activity Generator. The thesis also includes a detailed documentation of the results from all the tests.
- An Analysis of Traffic Behavior at Freeway Diverge Sections using Traffic Microsimulation SoftwareKehoe, Nicholas Paul (Virginia Tech, 2011-06-22)Microscopic simulation traffic models are widely used by transportation researchers and practitioners to evaluate and plan for transportation facilities. The intent of these models is to estimate the second-by-second vehicle movements and interactions on such facilities. Due to constraints related to time, budget, and availability of data, these models are typically designed in such a way where the microscopic output is viewed on the macroscopic level. Inherently, this can leave uncertainty to how the model estimates the individual interactions between vehicles on the microscopic level. This thesis utilizes three microsimulation models, INTEGRATION, VISSIM, and CORSIM, to investigate the lane changing behavior as vehicles approach a freeway diverge area. The count of lane changes, lane use distribution, and visual inspection of the simulated lane changing behavior was compared to video data collected at two freeway diverge areas on U.S. 460 in the vicinity of Blacksburg, Virginia during both off-peak and peak periods. It was observed that all three models generally overestimated the number of lane changes near the diverge areas compared to field observations. By modifying the models' lane changing logic, the models were able to closely match field observations in one of the four scenarios. It was found that microsimulation models accurately estimated the lane use distribution. In addition, the INTEGRATION lane use distribution results were found to be more consistent when compared to observed lane use distribution than either VISSIM or CORSIM.
- Applications of Connected Vehicle Technology to Address Issues of School Bus and School Bus Stop SafetyDonoughe, Kelly (Virginia Tech, 2016-03-01)An analysis of crash data shows that the number of fatal school bus related crashes has remained nearly constant over the past ten years, despite an increase in available safety-improving technology. One of the main concerns related to school bus safety is the issue of illegally passing a stopped school bus. To improve safety around stopped school buses, this dissertation presents a Concept of Operations for a connected vehicle application to improve safety around stopped school buses using Dedicated Short Range Communication. The focus of this application is to increase awareness of stopped school buses or bus stops that are obscured from the driver's view. An on-road naturalistic driving experiment evaluated driver response to an in-vehicle message to warn drivers that they were approaching a school bus that was stopped around a curve. The dissertation concludes by using microsimulation to evaluate the impact of implementing specialized speed control algorithms to reduce vehicle speeds near bus stops along high speed roads. The simulation evaluated the effect of the reduce speed zone on travel time and emissions when the system was considered as a pre-timed speed limit and also when the system was modeled as a connected vehicle system.
- Appling Machine and Statistical Learning Techniques to Intelligent Transport Systems: Bottleneck Identification and Prediction, Dynamic Travel Time Prediction, Driver Run-Stop Behavior Modeling, and Autonomous Vehicle Control at IntersectionsElhenawy, Mohammed Mamdouh Zakaria (Virginia Tech, 2015-06-30)In this dissertation, new algorithms that address three traffic problems of major importance are developed. First automatic identification and prediction algorithms are developed to identify and predict the occurrence of traffic congestion. The identification algorithms concoct a model to identify speed thresholds by exploiting historical spatiotemporal speed matrices. We employ the speed model to define a cutoff speed separating free-flow from congested traffic. We further enhance our algorithm by utilizing weather and visibility data. To our knowledge, we are the first to include weather and visibility variables in formulating an automatic congestion identification model. We also approach the congestion prediction problem by adopting an algorithm which employs Adaptive Boosting machine learning classifiers again something novel that has not been done previously. The algorithm is promising where it resulted in a true positive rate slightly higher than 0.99 and false positive rate less than 0.001. We next address the issue of travel time modeling. We propose algorithms to model travel time using various machine learning and statistical learning techniques. We obtain travel time models by employing the historical spatiotemporal speed matrices in conjunction with our algorithms. The algorithms yield pertinent information regarding travel time reliability and prediction of travel times. Our proposed algorithms give better predictions compared to the state of practice algorithms. Finally we consider driver safety at signalized intersections and uncontrolled intersections in a connected vehicles environment. For signalized intersections, we exploit datasets collected from four controlled experiments to model the stop-run behavior of the driver at the onset of the yellow indicator for various roadway surface conditions and multiple vehicle types. We further propose a new variable (predictor) related to driver aggressiveness which we estimate by monitoring how drivers respond to yellow indications. The performance of the stop-run models shows improvements after adding the new aggressiveness predictor. The proposed models are practical and easy to implement in advanced driver assistance systems. For uncontrolled intersections, we present a game theory based algorithm that models the intersection as a chicken game to solve the conflicts between vehicles crossing the intersection. The simulation results show a 49% saving in travel time on average relative to a stop control when the vehicles obey the Nash equilibrium of the game.
- Assessing and Validating the Ability of Machine Learning to Handle Unrefined Particle Air Pollution Mobile Monitoring Data Randomly, Spatially, and SpatiotemporallyAlazmi, Asmaa; Rakha, Hesham A. (MDPI, 2022-08-16)Many epidemiological studies have evaluated the accuracy of machine learning models in predicting levels of particulate number (PN) and black carbon (BC) pollutant concentrations. However, few studies have investigated the ability of machine learning to predict the pollutant concentration with using unrefined mobile measurement data and explore the reliability of the prediction models. Additionally, researchers are moving away from using fixed-site data in favor of using mobile monitoring data in a variety of locations to develop hourly empirical models of particulate air pollution. This study compared the differences between long-term (daily average) and short-term (hourly average and 1 s unrefined data) model performance in three different classes of cross validation: randomly, spatially, and spatially temporally. This study used secondary data describing BC and PN pollutant levels in the rural location of Blacksburg (VA). Our results show that the model based on unrefined data was able to detect the pollutant hot spot areas with similar accuracy compared to the aggregated model. Moreover, the performance was found to improve when temporal data added to the model: the 10-fold MAE for the BC and PN were 0.44 μg/m3 and 3391 pt/cm3, respectively, for the unrefined data (one second data) model. The findings detailed here will add to the literature on the correlation between data (pre)processing and the efficacy of machine learning models in predicting pollution levels while also enhancing our understanding of more reliable validation strategies.
- Battery Electric Vehicle Eco-Cooperative Adaptive Cruise Control in the Vicinity of Signalized IntersectionsChen, Hao; Rakha, Hesham A. (MDPI, 2020-05-12)This study develops a connected eco-driving controller for battery electric vehicles (BEVs), the BEV Eco-Cooperative Adaptive Cruise Control at Intersections (Eco-CACC-I). The developed controller can assist BEVs while traversing signalized intersections with minimal energy consumption. The calculation of the optimal vehicle trajectory is formulated as an optimization problem under the constraints of (1) vehicle acceleration/deceleration behavior, defined by a vehicle dynamics model; (2) vehicle energy consumption behavior, defined by a BEV energy consumption model; and (3) the relationship between vehicle speed, location, and signal timing, defined by vehicle characteristics and signal phase and timing (SPaT) data shared under a connected vehicle environment. The optimal speed trajectory is computed in real-time by the proposed BEV eco-CACC-I controller, so that a BEV can follow the optimal speed while negotiating a signalized intersection. The proposed BEV controller was tested in a case study to investigate its performance under various speed limits, roadway grades, and signal timings. In addition, a comparison of the optimal speed trajectories for BEVs and internal combustion engine vehicles (ICEVs) was conducted to investigate the impact of vehicle engine types on eco-driving solutions. Lastly, the proposed controller was implemented in microscopic traffic simulation software to test its networkwide performance. The test results from an arterial corridor with three signalized intersections demonstrate that the proposed controller can effectively reduce stop-and-go traffic in the vicinity of signalized intersections and that the BEV Eco-CACC-I controller produces average savings of 9.3% in energy consumption and 3.9% in vehicle delays.
- Bicycle Naturalistic Data CollectionElhenawy, Mohammed; Jahangiri, Arash; Rakha, Hesham A. (Connected Vehicle/Infrastructure University Transportation Center (CVI-UTC), 2016-06-15)Recently, bicycling has drawn more attention as a sustainable and eco-friendly mode of transportation. Between 2000 and 2011, bicycle commuting rates in the United States rose by 80% in large bicycle friendly cities (BFCs), by 32% in non-BFCs, and overall by 47%. On the other hand, about 700 cyclists are killed and nearly 50,000 are injured annually in bicycle–motor vehicle crashes in recent years in the United States. More than 30% of cyclist fatalities in the United States from 2008 to 2012 occurred at intersections, and up to 16% of bicycle-related crashes were due to cyclists’ violations at intersections. In light of these statistics, this project focused on investigating factors that affect cyclist behavior and predicting cyclist violations at intersections. Naturalistic cycling data were used to assess the feasibility of developing cyclist violation prediction models. Mixed-effects generalized regression model is used to analyze the data and identify the significant factor affecting the probability of violations by cyclists. At signalized intersections, right turn, side traffic and opposing traffic are statistically significant factors affecting the probability of red light violation. At stop-controlled intersections, the presence of other road users, left turn, right turn and warm weather are statistically significant factors affecting the probability of violations. Violation prediction models were developed for stop-controlled intersections based on kinetic data measured as cyclists approached the intersection. Prediction error rates were 0% to 10%, depending on how far from the intersection the prediction task was conducted. An error rate of 6% was obtained when the violating cyclist was at a time-to-intersection of about 2 seconds, which is sufficient for most motor vehicle drivers to respond.
- Calibration and Comparison of the VISSIM and INTEGRATION Microscopic Traffic Simulation ModelsGao, Yu (Virginia Tech, 2008-09-05)Microscopic traffic simulation software have gained significant popularity and are widely used both in industry and research mainly because of the ability of these tools to reflect the dynamic nature of the transportation system in a stochastic fashion. To better utilize these software, it is necessary to understand the underlying logic and differences between them. A Car-following model is the core of every microscopic traffic simulation software. In the context of this research, the thesis develops procedures for calibrating the steady-state car-following models in a number of well known microscopic traffic simulation software including: CORSIM, AIMSUN, VISSIM, PARAMICS and INTEGRATION and then compares the VISSIM and INTEGRATION software for the modeling of traffic signalized approaches. The thesis presents two papers. The first paper develops procedures for calibrating the steady-state component of various car-following models using macroscopic loop detector data. The calibration procedures are developed for a number of commercially available microscopic traffic simulation software, including: CORSIM, AIMSUN2, VISSIM, Paramics, and INTEGRATION. The procedures are then applied to a sample dataset for illustration purposes. The paper then compares the various steady-state car-following formulations and concludes that the Gipps and Van Aerde steady-state car-following models provide the highest level of flexibility in capturing different driver and roadway characteristics. However, the Van Aerde model, unlike the Gipps model, is a single-regime model and thus is easier to calibrate given that it does not require the segmentation of data into two regimes. The paper finally proposes that the car-following parameters within traffic simulation software be link-specific as opposed to the current practice of coding network-wide parameters. The use of link-specific parameters will offer the opportunity to capture unique roadway characteristics and reflect roadway capacity differences across different roadways. Second, the study compares the logic used in both the VISSIM and INTEGRATION software, applies the software to some simple networks to highlight some of the differences/similarities in modeling traffic, and compares the various measures of effectiveness derived from the models. The study demonstrates that both the VISSIM and INTEGRATION software incorporate a psycho-physical car-following model which accounts for vehicle acceleration constraints. The INTEGRATION software, however uses a physical vehicle dynamics model while the VISSIM software requires the user to input a vehicle-specific speed-acceleration kinematics model. The use of a vehicle dynamics model has the advantage of allowing the model to account for the impact of roadway grades, pavement surface type, pavement surface condition, and type of vehicle tires on vehicle acceleration behavior. Both models capture a driver's willingness to run a yellow light if conditions warrant it. The VISSIM software incorporates a statistical stop/go probability model while current development of the INTEGRATION software includes a behavioral model as opposed to a statistical model for modeling driver stop/go decisions. Both software capture the loss in capacity associated with queue discharge using acceleration constraints. The losses produced by the INTEGRATION model are more consistent with field data (7% reduction in capacity). Both software demonstrate that the capacity loss is recovered as vehicles move downstream of the capacity bottleneck. With regards to fuel consumption and emission estimation the INTEGRATION software, unlike the VISSIM software, incorporates a microscopic model that captures transient vehicle effects on fuel consumption and emission rates.
- Calibration of Steady-state Car-following Models using Macroscopic Loop Detector DataRakha, Hesham A.; Gao, Yu (Virginia Tech. Virginia Tech Transportation Institute, 2010-05)The paper develops procedures for calibrating the steady-state component of various car following models using macroscopic loop detector data. The calibration procedures are developed for a number of commercially available microscopic traffic simulation software, including: CORSIM, AIMSUN2, VISSIM, Paramics, and INTEGRATION. The procedures are then applied to a sample dataset for illustration purposes. The paper then compares the various steady-state car-following formulations and concludes that the Gipps and Van Aerde steady-state car following models provide the highest level of flexibility in capturing different driver and roadway characteristics. However, the Van Aerde model, unlike the Gipps model, is a single-regime model and thus is easier to calibrate given that it does not require the segmentation of data into two regimes. The paper finally proposes that the car-following parameters within traffic simulation software be link-specific as opposed to the current practice of coding network-wide parameters. The use of link-specific parameters will offer the opportunity to capture unique roadway characteristics and reflect roadway capacity differences across different roadways.
- Capacity Modeling of Freeway Weaving SectionsZhang, Yihua (Virginia Tech, 2005-05-09)The dissertation develops analytical models that estimate the capacity of freeway weaving sections. The analytical models are developed using simulated data that were compiled using the INTEGRATION software. Consequently, the first step of the research effort is to validate the INTEGRATION lane-changing modeling procedures and the capacity estimates that are derived from the model against field observations. The INTEGRATION software is validated against field data gathered by the University of California at Berkeley by comparing the lateral and longitudinal distribution of simulated and field observed traffic volumes categorized by O-D pair on nine weaving sections in the Los Angeles area. The results demonstrate a high degree of consistency between simulated and field observed traffic volumes within the various weaving sections. Subsequently, the second validation effort compares the capacity estimates of the INTEGRATION software to field observations from four weaving sections operating at capacity on the Queen Elizabeth Way (QEW) in Toronto, Canada. Again, the results demonstrate that the capacity estimates of the INTEGRATION software are consistent with the field observations both in terms of absolute values and temporal variability across different days. The error was found to be in the range of 10% between simulated and field observed capacities. Prior to developing the analytical models, the dissertation presents a systematic analysis of the factors that impact the capacity of freeway weaving sections, which were found to include the length of the weaving section, the weaving ratio (a new parameter that is developed as part of this research effort), the percentage of heavy vehicles, and the speed limit differential between freeway and on- and off-ramps. The study demonstrates that the weaving ratio, which is currently defined as the ratio of the lowest weaving volume to the total weaving volume in the 2000 Highway Capacity Manual, has a significant impact on the capacity of weaving sections. The study also demonstrates that the weaving ratio is an asymmetric function and thus should reflect the source of the weaving volume. Consequently, a new definition for the weaving ratio is introduced that explicitly identifies the source of the weaving volume. In addition, the study demonstrates that the length of the weaving section has a larger impact on the capacity of weaving sections for short lengths and high traffic demands. Furthermore, the study demonstrates that there does not exist enough evidence to conclude that the speed limit differential between mainline freeway and on- and off-ramps has a significant impact on weaving section capacities. Finally, the study demonstrates that the HCM procedures model the heavy duty vehicle impacts reasonably well. This dissertation presents the development of new capacity models for freeway weaving sections. In these models, a new definition of the weaving ratio that explicitly accounts for the source of weaving volume is introduced. The proposed analytical models estimate the capacity of weaving sections to within 12% of the simulated data, while the HCM procedures exhibit errors in the range of 114%. Among the newly developed models, the Artificial Neural Network (ANN) models performs slightly better that the statistical models in terms of model prediction errors. However, the sensitivity analysis results demonstrate unrealistic behavior of the ANN models under certain conditions. Consequently, the use of a statistical model is recommended because it provides a high level of accuracy while providing accurate model responses to changes in model input parameters (good response to the gradient of the input parameters).
- Characterization of Urban Air Pollutant Emissions by Eddy Covariance using a Mobile Flux LaboratoryKlapmeyer, Michael Evan (Virginia Tech, 2012-04-26)Air quality management strategies in the US are developed largely from estimates of emissions, some highly uncertain, rather than actual measurements. Improved knowledge based on measurements of real-world emissions is needed to increase the effectiveness of these strategies. Consequently, the objectives of this research were to (1) quantify relationships among urban emissions sources, land use, and demographics, (2) determine the spatial and temporal variability of emissions, and (3) evaluate the accuracy of official emissions estimates. These objectives guided three field campaigns that employed a unique mobile laboratory equipped to measure pollutant fluxes by eddy covariance. The first campaign, conducted in Norfolk, Virginia, represented the first time fluxes of nitrogen oxides (NOx) were measured by eddy covariance in an urban environment. Fluxes agreed to within 10% of estimates in the National Emissions Inventory (NEI), but were three times higher than those of an inventory used for air quality modeling and planning. Additionally, measured fluxes were correlated with road density and increased development. The second campaign took place in the Tijuana-San Diego border region. Distinct spatial differences in fluxes of carbon dioxide (CO₂), NOx, and particles were revealed across four sampling locations with the lowest fluxes occurring in a residential neighborhood and the highest ones at a port of entry characterized by heavy motor vehicle traffic. Additionally, observed emissions of NOx and carbon monoxide were significantly higher than those in emissions inventories, suggesting the need for further refinement of the inventories. The third campaign focused on emissions at a regional airport in Roanoke, Virginia. NOx and particle number emissions indices (EIs) were calculated for aircraft, in terms of grams of pollutant emitted per kilogram of fuel burned. Observed NOx EIs were ~20% lower than those in an international databank. NOx EIs from takeoffs were significantly higher than those from taxiing, but relative differences for particle EIs were mixed. Observed NOx fluxes at the airport agreed to within 25% of estimates derived from the NEI. The results of this research will provide greater knowledge of urban impacts to air quality and will improve associated management strategies through increased accuracy of official emissions estimates.
- City-Wide Eco-Routing Navigation Considering Vehicular Communication ImpactsElbery, Ahmed; Rakha, Hesham A. (MDPI, 2019-01-12)Intelligent Transportation Systems (ITSs) utilize Vehicular Ad-hoc Networks (VANETs) to collect, disseminate, and share data with the Traffic Management Center (TMC) and different actuators. Consequently, packet drop and delay in VANETs can significantly impact ITS performance. Feedback-based eco-routing (FB-ECO) is a promising ITS technology, which is expected to reduce vehicle fuel/energy consumption and pollutant emissions by routing drivers through the most environmentally friendly routes. To compute these routes, the FB-ECO utilizes VANET communication to update link costs in real-time, based on the experiences of other vehicles in the system. In this paper, we study the impact of vehicular communication on FB-ECO navigation performance in a large-scale real network with realistic calibrated traffic demand data. We conduct this study at different market penetration rates and different congestion levels. We start by conducting a sensitivity analysis of the market penetration rate on the FB-ECO system performance, and its network-wide impacts considering ideal communication. Subsequently, we study the impact of the communication network on system performance for different market penetration levels, considering the communication system. The results demonstrate that, for market penetration levels less than 30%, the eco-routing system performs adequately in both the ideal and realistic communication scenarios. It also shows that, for realistic communication, increasing the market penetration rate results in a network-wide degradation of the system performance.
- Collaborative En Route Airspace Management Considering Stochastic Demand, Capacity, and Weather ConditionsHenderson, Jeffrey Michael (Virginia Tech, 2008-03-26)The busiest regions of airspace in the U.S. are congested during much of the day from traffic volume, weather, and other airspace restrictions. The projected growth in demand for airspace is expected to worsen this congestion while reducing system efficiency and safety. This dissertation focuses on providing methods to analyze en route airspace congestion during severe convective weather (i.e. thunderstorms) in an effort to provide more efficient aircraft routes in terms of: en route travel time, air traffic controller workload, aircraft collision potential, and equity between airlines and other airspace users. The en route airspace is generally that airspace that aircraft use between the top of climb and top of descent. Existing en route airspace flight planning models have several important limitations. These models do not appropriately consider the uncertainty in airspace demand associated with departure time prediction and en route travel time. Also, airspace capacity is typically assumed to be a static value with no adjustments for weather or other dynamic conditions that impact the air traffic controller. To overcome these limitations a stochastic demand, stochastic capacity, and an incremental assignment method are developed. The stochastic demand model combines the flight departure uncertainty and the en route travel time uncertainty to achieve better estimates for sector demand. This model is shown to reduce the predictive error for en route sector demand by 20\% at a 30 minute look-ahead time period. The stochastic capacity model analyzes airspace congestion at a more macroscopic level than available in existing models. This higher level of analysis has the potential to reduce computational time and increase the number of alternative routing schemes considered. The capacity model uses stochastic geometry techniques to develop predictions of the distribution of flight separation and conflict potential. A prediction of dynamic airspace capacity is calculated based on separation and conflict potential. The stochastic demand and capacity models are integrated into a graph theoretic framework to generate alternative routing schemes. Validation of the overall integrated model is performed using the fast time airspace simulator RAMS. The original flight plans, the routing obtained from an integer programming method, and the routing obtained from the incremental method developed in this dissertation are compared. Results of this validation simulation indicate that integer programming and incremental routing methods are both able to reduce the average en route travel time per flight by 6 minutes. Other benefits include a reduction in the number of conflict resolutions and weather avoidance maneuvers issued by en route air traffic controllers. The simulation results do not indicate a significant difference in quality between the incremental and integer programming methods of routing flights around severe weather.