Browsing by Author "Sainio, Sami"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Investigating Particle Size-Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt CathodesZhang, Yuxin; Hu, Anyang; Liu, Jue; Xu, Zhengrui; Mu, Linqin; Sainio, Sami; Nordlund, Dennis; Li, Luxi; Sun, Cheng-Jun; Xiao, Xianghui; Liu, Yijin; Lin, Feng (Wiley-V C H Verlag, 2022-04)Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high-energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size-dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron-sized particles exhibit a holistic "core-shell" charge distribution, whereas sub-micron particles show more uniform redox reactions throughout the particles and ensembles. Sub-micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials.
- Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surfaceZhang, Yuxin; Hu, Anyang; Xia, Dawei; Hwang, Sooyeon; Sainio, Sami; Nordlund, Dennis; Michel, F. Marc; Moore, Robert B.; Li, Luxi; Lin, Feng (Nature Portfolio, 2023-07)Mn dissolution has been a long-standing, ubiquitous issue that negatively impacts the performance of Mn-based battery materials. Mn dissolution involves complex chemical and structural transformations at the electrode–electrolyte interface. The continuously evolving electrode–electrolyte interface has posed great challenges for characterizing the dynamic interfacial process and quantitatively establishing the correlation with battery performance. In this study, we visualize and quantify the temporally and spatially resolved Mn dissolution/redeposition (D/R) dynamics of electrochemically operating Mn-containing cathodes. The particle-level and electrode-level analyses reveal that the D/R dynamics is associated with distinct interfacial degradation mechanisms at different states of charge. Our results statistically differentiate the contributions of surface reconstruction and Jahn–Teller distortion to the Mn dissolution at different operating voltages. Introducing sulfonated polymers (Nafion) into composite electrodes can modulate the D/R dynamics by trapping the dissolved Mn species and rapidly establishing local Mn D/R equilibrium. This work represents an inaugural effort to pinpoint the chemical and structural transformations responsible for Mn dissolution via an operando synchrotron study and develops an effective method to regulate Mn interfacial dynamics for improving battery performance.
- Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of High-Voltage LiNi0.5Mn1.5O4 Spinel Cathode MaterialsSun, Huabin; Hu, Anyang; Spence, Stephanie; Kuai, Chunguang; Hou, Dong; Mu, Linqin; Liu, Jue; Li, Luxi; Sun, Chengjun; Sainio, Sami; Nordlund, Dennis; Luo, Wei; Huang, Yunhui; Lin, Feng (Wiley-V C H Verlag, 2022-05)In the spinel oxide cathode family, LiNi0.5Mn1.5O4 (LNMO) shows a high operating voltage (approximate to 4.7 V vs Li/Li+) and excellent Li-ion mobility with stable 3D conducting channels. Ni/Mn cation disordered and ordered phases usually coexist in LNMO materials, and they have distinct structural and electrochemical properties, resulting in different battery performances for LNMO materials with different phase compositions. Identifying the correlation between phase compositions and electrochemical properties is of significance to the improvement of battery performance and understanding of degradation mechanisms. Herein, the disordered/ordered phase compositions in LNMO materials are tailored by post-annealing strategies and their impacts on electrochemical performance and degradation mechanisms from the surface to the bulk are systematically investigated. The ordered phase increases rapidly as Mn3+ is oxidized to Mn4+ through a post-annealing process. LNMO with an intermediate fraction of disordered and ordered phases gives rise to improved cycling stability. This article further reports that a high ordered phase fraction can preferentially protect Ni from dissolution during cycling. However, these results suggest that the transition metal dissolution and surface structural change of LNMO do not exhibit a direct correlation with cycling stability. These results indicate the capacity fading mainly correlates with the bulk structural distortion, leading to decreased Li-ion kinetics.