VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Investigating Particle Size-Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes

Files

TR Number

Date

2022-04

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-V C H Verlag

Abstract

Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high-energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size-dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron-sized particles exhibit a holistic "core-shell" charge distribution, whereas sub-micron particles show more uniform redox reactions throughout the particles and ensembles. Sub-micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials.

Description

Keywords

disordered rocksalt cathodes, heterogeneous charge distribution, particle size engineering, size-dependent redox reactions

Citation