Browsing by Author "Sallam, Ahmed"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Gradient descent optimization of acoustic holograms for transcranial focused ultrasoundSallam, Ahmed; Cengiz, Ceren; Pewekar, Mihir; Hoffmann, Eric; Legon, Wynn; Vlaisavljevich, Eli; Shahab, Shima (AIP Publishing, 2024-10-08)Acoustic holographic lenses, also known as acoustic holograms, can change the phase of a transmitted wavefront in order to shape and construct complex ultrasound pressure fields, often for focusing the acoustic energy on a target region. These lenses have been proposed for transcranial focused ultrasound (tFUS) to create diffraction-limited focal zones that target specific brain regions while compensating for skull aberration. Holograms are currently designed using time-reversal approaches in full-wave time-domain numerical simulations. Such simulations need time-consuming computations, which severely limits the adoption of iterative optimization strategies. In the time-reversal method, the number and distribution of virtual sources can significantly influence the final sound field. Because of the computational constraints, predicting these effects and determining the optimal arrangement is challenging. This study introduces an efficient method for designing acoustic holograms using a volumetric holographic technique to generate focused fields inside the skull. The proposed method combines a modified mixed-domain method for ultrasonic propagation with a gradient descent iterative optimization algorithm. The findings are further validated in underwater experiments with a realistic 3D-printed skull phantom. This approach enables substantially faster holographic computation than previously reported techniques. The iterative process uses explicitly defined loss functions to bias the ultrasound field’s optimization parameters to specific desired characteristics, such as axial resolution, transversal resolution, coverage, and focal region uniformity, while eliminating the uncertainty associated with virtual sources in time-reversal techniques. The proposed techniques enable more rapid hologram computation and more flexibility in tailoring ultrasound fields for specific therapeutic requirements.
- Multi-functional Holographic Acoustic Lenses for Modulating Low- to High-Intensity Focused UltrasoundSallam, Ahmed (Virginia Tech, 2024-03-27)Focused ultrasound (FUS) is an emerging technology, and it plays an essential role in clinical and contactless acoustic energy transfer applications. These applications have critical criteria for the acoustic pressure level, the creation of complex pressure patterns, spatial management of the complicated acoustic field, and the degree of nonlinear waveform distortion at the focal areas, which have not been met to date. This dissertation focuses on introducing experimentally validated novel numerical approaches, optimization algorithms, and experimental techniques to fill existing knowledge gaps and enhance the functionality of holographic acoustic lenses (HALs) with an emphasis on applications related to biomedical-focused ultrasound and ultrasonic energy transfer. This dissertation also aims to investigate the dynamics of nonlinear acoustic beam shaping in engineered HALs. First, We will introduce 3D-printed metallic acoustic holographic mirrors for precise spatial manipulation of reflected ultrasonic waves. Optimization algorithms and experimental validations are presented for applications like contactless acoustic energy transfer. Furthermore, a portion of the present work focuses on designing holographic lenses in strongly heterogeneous media for ultrasound focusing and skull aberration compensation in transcranial-focused ultrasound. To this end, we collaborated with the Biomedical Engineering and Mechanics Department as well as Fralin Biomedical Research Institute to implement acoustic lenses in transcranial neuromodulation, targeting to improve the quality of life for patients with brain disease by minimizing the treatment time and optimizing the ultrasonic energy into the region of interest. We will also delve into the nonlinear regime for High-Intensity Focused Ultrasound (HIFU) applications, this study is structured under three objectives: (1) establishing nonlinear acoustic-elastodynamics models to represent the dynamics of holographic lenses under low- to high-intensity acoustic fields; (2) validating and leveraging the resulting models for high-fidelity lens designs used in generating specified nonlinear ultrasonic fields of complex spatial distribution; (3) exploiting new physical phenomena in acoustic holography. The performed research in this dissertation yields experimentally proven mathematical frameworks for extending the functionality of holographic lenses, especially in transcranial-focused ultrasound and nonlinear wavefront shaping, advancing knowledge in the burgeoning field of the inverse issue of nonlinear acoustics, which has remained underdeveloped for many years.