Browsing by Author "Seleem, Mohamed N."
Now showing 1 - 20 of 63
Results Per Page
Sort Options
- Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogensThangamani, Shankar; Mohammad, Haroon; Abushahba, Mostafa FN N.; Sobreira, Tiago JP P.; Hedrick, Victoria E.; Paul, Lake N.; Seleem, Mohamed N. (Nature Publishing Group, 2016-03-03)Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin's antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin's ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections.
- Antibacterial activity and safety of commercial veterinary cationic steroid antibiotics and neutral superoxidized waterBergstrom, Benjamin E.; AbdelKhalek, Ahmed; Younis, Waleed; Hammac, G. Kenitra; Townsend, Wendy M.; Seleem, Mohamed N. (PLoS, 2018-03-07)Antibiotic resistance of bacteria common to the ocular surface is an evolving problem. Thus, novel treatment options with new modes of action are required. We investigated the antibacterial activity and safety of three commercially available topical veterinary ophthalmic products (cationic steroid antibiotics, products A and B, and a neutral superoxidized water, product C) to determine their potential use as antimicrobial alternatives. The minimum inhibitory concentrations (MIC) of the three products were determined against 17 antibiotic resistant bacterial clinical isolates from the ocular surface. Using a standard cytotoxicity assay, the products at varying concentrations were evaluated with a corneal fibroblast cell line and a macrophage-like cell line to determine their potential toxic effect in vitro. The commercial ophthalmic solutions, ofloxacin 0.3%, tobramycin 0.3% and gentamicin 0.3% were used as positive controls for the MIC and tobramycin 0.3% was used as positive control for the cytotoxicity assays. For the MIC, Product C showed no inhibition of growth for any organisms, while Products A and B showed inhibition of growth similar to slightly less than the positive controls. For the cytotoxicity assays, Product C exhibited minimal toxicity while Products A and B exhibited toxicity similar to the controls. In conclusion, Product C had no antibacterial activity in these assays, while Products A and B had antibacterial profiles similar to slightly less than common topical ophthalmic antibiotics and cytotoxicity profiles similar to common topical ophthalmic antibiotics. To our knowledge, this is the first report on the antibacterial activity and safety of the cationic steroid antibiotics and superoxidized water.
- Antibacterial activity and therapeutic efficacy of Fl-PRPRPL-5, a cationic amphiphilic polyproline helix, in a mouse model of staphylococcal skin infectionThangamani, Shankar; Nepal, Manish; Chmielewski, Jean; Seleem, Mohamed N. (Dove Medical Press, 2015-01-01)The antibacterial activities and therapeutic efficacy of the cationic, unnatural proline-rich peptide Fl-PRPRPL-5 were evaluated against multidrug-resistant Staphylococcus aureus in a mouse model of skin infection. Fl-PRPRPL-5 showed potent activity against all clinical isolates of S. aureus tested, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA, respectively). Fl-PRPRPL-5 was also superior in clearing established in vitro biofilms of S. aureus and Staphylococcus epidermidis, compared with the established antimicrobials mupirocin and vancomycin. Additionally, topical treatment of an MRSA-infected wound with Fl-PRPRPL-5 enhanced wound closure and significantly reduced bacterial load. Finally, 0.5% Fl-PRPRPL-5 significantly reduced the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in wounds induced by MRSA skin infection. In conclusion, the results of this study suggest the potential application of Fl-PRPRPL-5 in the treatment of staphylococcal skin infections.
- Antibacterial Activity of Novel Cationic Peptides against Clinical Isolates of Multi-Drug Resistant Staphylococcus pseudintermedius from Infected DogsMohamed, Mohamed F.; Hammac, G. Kenitra; Guptill, Lynn; Seleem, Mohamed N. (PLoS, 2014-12-31)Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP) has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity) and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan) with minimum inhibitory concentration50 (MIC50) of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide) and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF)3K (two cell penetrating peptides) were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF)3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin and ciprofloxacin increased 32 and 8 fold, respectively; under similar conditions. Taken together, these results support designing of peptide-based therapeutics for combating MRSP infections, particularly for topical application.
- Antibacterial cell-penetrating peptidesChmielewski, Jean; Seleem, Mohamed N. (US Patent, 2020-12-29)The present disclosure relates to novel antibacterial cell penetrating peptides and derivatives, and methods to make and use the novel antibacterial cell-penetrating peptides and derivatives. The novel antibacterial cell-penetrating peptides of the present invention with shorter linker between a pyrrolidine ring and a guanidine group provide unexpectedly higher potency against a broader scope of bacterial.
- Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus pseudintermediusMohammad, Haroon; Reddy, PV Narasimha V. N.; Monteleone, Dennis; Mayhoub, Abdelrahman S.; Cushman, Mark; Hammac, G. Kenitra; Seleem, Mohamed N. (PLoS, 2015-06-18)Staphylococcus pseudintermedius is a commensal organism of companion animals that is a significant source of opportunistic infections in dogs. With the emergence of clinical isolates of S. pseudintermedius (chiefly methicillin-resistant S. pseudintermedius (MRSP)) exhibiting increased resistance to nearly all antibiotic classes, new antimicrobials and therapeutic strategies are urgently needed. Thiazole compounds have been previously shown to possess potent antibacterial activity against multidrug-resistant strains of Staphylococcus aureus of human and animal concern. Given the genetic similarity between S. aureus and S. pseudintermedius, this study explores the potential use of thiazole compounds as novel antibacterial agents against methicillin-sensitive S. pseudintermedius (MSSP) and MRSP. A broth microdilution assay confirmed these compounds exhibit potent bactericidal activity (at sub-microgram/mL concentrations) against both MSSA and MRSP clinical isolates while the MTS assay confirmed three compounds (at 10 μg/mL) were not toxic to mammalian cells. A time-kill assay revealed two derivatives rapidly kill MRSP within two hours. However, this rapid bactericidal activity was not due to disruption of the bacterial cell membrane indicating an alternative mechanism of action for these compounds against MRSP. A multistep resistance selection analysis revealed compounds 4 and 5 exhibited a modest (twofold) shift in activity over ten passages. Furthermore, all six compounds (at a subinihibitory concentration) demonstrated the ability to re-sensitize MRSP to oxacillin, indicating these compounds have potential use for extending the therapeutic utility of β-lactam antibiotics against MRSP. Metabolic stability analysis with dog liver microsomes revealed compound 3 exhibited an improved physicochemical profile compared to the lead compound. In addition to this, all six thiazole compounds possessed a long post-antibiotic effect (at least 8 hours) against MRSP. Collectively the present study demonstrates these synthetic thiazole compounds possess potent antibacterial activity against both MSSP and MRSP and warrant further investigation into their use as novel antimicrobial agents.
- Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella modelRanjan, Ashish; Pothayee, Nikorn; Seleem, Mohamed N.; Tyler, Ronald D.; Brenseke, Bonnie; Sriranganathan, Nammalwar; Riffle, Judy S.; Kasimanickam, Ramanathan K. (Dove Medical Press, 2009-01-01)Pluronic based core-shell nanostructures encapsulating gentamicin were designed in this study. Block copolymers of (PAA(+/-)Na-b-(PEO-b-PPO-b-PEO)-b-PAA(+/-)Na) were blended with PAA(-) Na(+) and complexed with the polycationic antibiotic gentamicin to form nanostructures. Synthesized nanostructures had a hydrodynamic diameter of 210 nm, zeta potentials of -0.7 (+/-0.2), and incorporated approximately 20% by weight of gentamicin. Nanostructures upon co-incubation with J774A.1 macrophage cells showed no adverse toxicity in vitro. Nanostructures administered in vivo either at multiple dosage of 5 microg g(-1) or single dosage of 15 microg g(-1) in AJ-646 mice infected with Salmonella resulted in significant reduction of viable bacteria in the liver and spleen. Histopathological evaluation for concentration-dependent toxicity at a dosage of 15 microg g(-1) revealed mineralized deposits in 50% kidney tissues of free gentamicin-treated mice which in contrast was absent in nanostructure-treated mice. Thus, encapsulation of gentamicin in nanostructures may reduce toxicity and improve in vivo bacterial clearance.
- Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse ModelMohammad, Haroon; Cushman, Mark; Seleem, Mohamed N. (PLoS, 2015-11-04)The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections.
- Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of Candida auris and displays potent synergistic interactions with azole drugsEldesouky, Hassan E.; Lanman, Nadia A.; Hazbun, Tony R.; Seleem, Mohamed N. (Taylor & Francis, 2020-01-01)With the rapid increase in the frequency of azole-resistant species, combination therapy appears to be a promising tool to augment the antifungal activity of azole drugs against resistant Candida species. Here, we report the effect of aprepitant, an antiemetic agent, on the antifungal activities of azole drugs against the multidrug-resistant Candida auris. Aprepitant reduced the minimum inhibitory concentration (MIC) of itraconazole in vitro, by up to eight-folds. Additionally, the aprepitant/itraconazole combination interfered significantly with the biofilm-forming ability of C. auris by 95 ± 0.13%, and significantly disrupted mature biofilms by 52 ± 0.83%, relative to the untreated control. In a Caenorhabditis elegans infection model, the aprepitant/itraconazole combination significantly prolonged the survival of infected nematodes by ~90% (five days post-infection) and reduced the fungal burden by ~92% relative to the untreated control. Further, this novel drug combination displayed broad-spectrum synergistic interactions against other medically important Candida species such as C. albicans, C. krusei, C. tropicalis, and C. parapsilosis (ƩFICI ranged from 0.08 to 0.31). Comparative transcriptomic profiling and mechanistic studies indicated aprepitant/itraconazole interferes significantly with metal ion homeostasis and compromises the ROS detoxification ability of C. auris. This study presents aprepitant as a novel, potent, and broad-spectrum azole chemosensitizing agent that warrants further investigation.
- Aryl-alkyl-lysines: Novel agents for treatment of C. difficile infectionGhosh, Chandradhish; AbdelKhalek, Ahmed; Mohammad, Haroon; Seleem, Mohamed N.; Haldar, Jayanta (Nature Publishing Group, 2020-03-27)Clostridium difficile infections (CDIs) are a growing health concern worldwide. The recalcitrance of C. difficile spores to currently available treatments and concomitant virulence of vegetative cells has made it imperative to develop newer modalities of treatment. Aryl-alkyl-lysines have been earlier reported to possess antimicrobial activity against pathogenic bacteria, fungi, and parasites. Their broad spectrum of activity is attributed to their ability to infiltrate microbial membranes. Herein, we report the activity of aryl-alkyl-lysines against C. difficile and associated pathogens. The most active compound NCK-10 displayed activity comparable to the clinically-used antibiotic vancomycin. Indeed, against certain C. difficile strains, NCK-10 was more active than vancomycin in vitro. Additionally, NCK-10 exhibited limited permeation across the intestinal tract as assessed via a Caco-2 bidirectional permeability assay. Overall, the findings suggest aryl-alkyl-lysines warrant further investigation as novel agents to treat CDI.
- Atazanavir Resensitizes Candida auris to AzolesElgammal, Yehia; Salama, Ehab A.; Seleem, Mohamed N. (American Society for Microbiology, 2023-05-17)Candida auris represents an urgent health threat. Here, we identified atazanavir as a potent drug capable of resensitizing C. auris clinical isolates to the activity of azole antifungals. Atazanavir was able to significantly inhibit the efflux pumps, glucose transport, and ATP synthesis of all tested isolates of C. auris. In addition, the combination of itraconazole with atazanavir-ritonavir significantly reduced the burden of azole-resistant C. auris in murine kidneys by 1.3 log10 (95%), compared to itraconazole alone.
- Auranofin exerts antibacterial activity against Neisseria gonorrhoeae in a female mouse model of genital tract infectionElhassanny, Ahmed E. M.; Abutaleb, Nader S.; Seleem, Mohamed N. (PLOS, 2022-04-21)Neisseria gonorrhoeae has been classified by the U.S. Centers for Disease Control and Prevention as an urgent threat due to the rapid development of antibiotic resistance to currently available antibiotics. Therefore, there is an urgent need to find new antibiotics to treat gonococcal infections. In our previous study, the gold-containing drug auranofin demonstrated potent in vitro activity against clinical isolates of N. gonorrhoeae, including multidrug-resistant strains. Therefore, the aim of this study was to investigate the in vivo activity of auranofin against N. gonorrhoeae using a murine model of vaginal infection. A significant reduction in N. gonorrhoeae recovered from the vagina was observed for infected mice treated with auranofin compared to the vehicle over the course of treatment. Relative to the vehicle, after three and five days of treatment with auranofin, a 1.04 (91%) and 1.40 (96%) average log(10)-reduction of recovered N. gonorrhoeae was observed. In conclusion, auranofin has the potential to be further investigated as a novel, safe anti-gonococcal agent to help meet the urgent need for new antimicrobial agents for N. gonorrhoeae infection.
- Auranofin Rapidly Eradicates Methicillin-resistant Staphylococcus aureus (MRSA) in an Infected Pressure Ulcer Mouse ModelMohammad, Haroon; Abutaleb, Nader S.; Seleem, Mohamed N. (Nature Publishing Group, 2020-04-29)Pressure ulcers (PUs) frequently occur in individuals with limited mobility including patients that are hospitalized or obese. PUs are challenging to resolve when infected by antibiotic-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA). In this study, we investigated the potential of repurposing auranofin to treat pressure ulcers infected with MRSA. Auranofin’s in vitro activity against strains of S. aureus (including MRSA) was not affected in the presence of higher bacterial inoculum (107 CFU/mL) or by lowering the pH in standard media to simulate the environment present on the surface of the skin. Additionally, S. aureus did not develop resistance to auranofin after repeated exposure for two weeks via a multi-step resistance selection experiment. In contrast, S. aureus resistance to mupirocin emerged rapidly. Moreover, auranofin exhibited a long postantibiotic effect (PAE) in vitro against three strains of S. aureus tested. Remarkably, topical auranofin completely eradicated MRSA (8-log10 reduction) in infected PUs of obese mice after just four days of treatment. This was superior to both topical mupirocin (1.96-log10 reduction) and oral clindamycin (1.24-log10 reduction), which are used to treat infected PUs clinically. The present study highlights auranofin’s potential to be investigated further as a treatment for mild-to-moderate PUs infected with S. aureus.
- Auranofin, at clinically achievable dose, protects mice and prevents recurrence from Clostridioides difficile infectionAbutaleb, Nader S.; Seleem, Mohamed N. (Nature Publishing Group, 2020-05-07)Clostridioides difficile is the leading cause of nosocomial infections and a worldwide urgent public health threat. Without doubt, there is an urgent need for new effective anticlostridial agents due to the increasing incidence and severity of C. difficile infection (CDI). The aim of the present study is to investigate the in vivo efficacy of auranofin (rheumatoid arthritis FDA-approved drug) in a CDI mouse model and establish an adequate dosage for treatment. The effects of increased C. difficile inoculum, and pre-exposure to simulated gastric intestinal fluid (SGF) and simulated intestinal fluid (SIF), on the antibacterial activity of auranofin were investigated. Auranofin’s in vitro antibacterial activity was stable in the presence of high bacterial inoculum size compared to vancomycin and fidaxomicin. Moreover, it maintained its anti-C. difficile activity after being exposed to SGF and SIF. Upon testing in a CDI mouse model, auranofin at low clinically achievable doses (0.125 mg/kg and 0.25 mg/kg) significantly protected mice against CDI with 100% and 80% survival, respectively. Most importantly, auranofin (0.125 mg/kg and 0.25 mg/kg) significantly prevented CDI recurrence when compared with vancomycin. Collectively, these results indicate that auranofin could potentially provide an effective, safe and quick supplement to the current approaches for treating CDI.
- Bacteriological profiling of diphenylureas as a novel class of antibiotics against methicillin-resistant Staphylococcus aureusMohammad, Haroon; Younis, Waleed; Ezzat, Hany G.; Peters, Christine E.; AbdelKhalek, Ahmed; Cooper, Bruce; Pogliano, Kit; Pogliano, Joe; Mayhoub, Abdelrahman S.; Seleem, Mohamed N. (PLoS, 2017-08-10)Bacterial resistance to antibiotics remains an imposing global public health challenge. Of the most serious pathogens, methicillin-resistant Staphylococcus aureus (MRSA) is problematic given strains have emerged that exhibit resistance to several antibiotic classes including β-lactams and agents of last resort such as vancomycin. New antibacterial agents composed of unique chemical scaffolds are needed to counter this public health challenge. The present study examines two synthetic diphenylurea compounds 1 and 2 that inhibit growth of clinically-relevant isolates of MRSA at concentrations as low as 4 µg/mL and are non-toxic to human colorectal cells at concentrations up to 128 μg/mL. Both compounds exhibit rapid bactericidal activity, completely eliminating a high inoculum of MRSA within four hours. MRSA mutants exhibiting resistance to 1 and 2 could not be isolated, indicating a low likelihood of rapid resistance emerging to these compounds. Bacterial cytological profiling revealed the diphenylureas exert their antibacterial activity by targeting bacterial cell wall synthesis. Both compounds demonstrate the ability to resensitize vancomycin-resistant Staphylococcus aureus to the effect of vancomycin. The present study lays the foundation for further investigation and development of diphenylurea compounds as a new class of antibacterial agents.
- Cleavable conjugates of antibiotics and an antibacterial cell-penetrating peptideChmielewski, Jean; Seleem, Mohamed N. (US Patent, 2020-06-23)The present disclosure relates to novel cleavable conjugates of antibiotics and an antibacterial cell-penetrating peptide, and methods to make and use the novel cleavable conjugates of antibiotics and an antibacterial cell-penetrating peptide.
- Colonization efficiency of multidrug-resistant Neisseria gonorrhoeae in a female mouse modelKikiowo, Babatomiwa; Bandara, Aloka B.; Abutaleb, Nader S.; Seleem, Mohamed N. (Oxford University Press, 2023-10-18)The rapid occurrence of gonococcal resistance to all classes of antibiotics could lead to untreatable gonorrhea. Thus, development of novel anti-Neisseria gonorrhoeae drugs is urgently needed. Neisseria gonorrhoeae FA1090 is the most used in gonococcal infection mouse models because of its natural resistance to streptomycin. Streptomycin inhibits the urogenital commensal flora that permits gonococcal colonization. However, this strain is drug-susceptible and cannot be used to investigate the efficacy of novel agents against multidrug-resistant N. gonorrhoeae. Hence, to test the in vivo efficacy of new therapeutics against N. gonorrhoeae resistant to the frontline antibiotics, azithromycin, or ceftriaxone, we constructed streptomycin-resistant mutants of N. gonorrhoeae CDC-181 (azithromycin-resistant) and WHO-X (ceftriaxone-resistant). We identified the inoculum size needed to successfully colonize mice. Both mutants, CDC-181-rpsLA128G and WHO-X-rpsLA128G, colonized the genital tract of mice for 14 days with 100% colonization observed for at least 7 days. CDC-181-rpsLA128G demonstrated better colonization of the murine genital tract compared to WHO-X-rpsLA128G. Lower inoculum of WHO-X-rpsLA128G (105 and 106 CFU) colonized mice better than higher inoculum. Overall, our results indicate that CDC-181-rpsLA128G and WHO-X-rpsLA128G can colonize the lower genital tract of mice and are suitable to be used in mouse models to investigate the efficacy of antigonococcal agents.
- Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animalsIqbal, Zahid; Seleem, Mohamed N.; Hussain, Hafiz Iftikhar; Huang, Lingli; Hao, Haihong; Yuan, Zonghui (Nature Publishing Group, 2016-10-14)Several studies have been conducted to check the prevalence of methicillin-resistant strains of Staphylococcus aureus (MRSA) in animals and animal-derived food products but limited data are available regarding their virulence and associated gene expression profile. In the present study, antibiotic resistance and virulence of MRSA and methicillin-sensitive S. aureus animal isolates were determined in vitro by agar dilution, biofilm formation, adhesion, invasion and intracellular survivability assays. In addition, the pathogenicity of these isolates was examined in a murine model of S. aureus sepsis. MRSA1679a, a strain isolated from chicken, was observed to be highly virulent, in cell culture and in mouse model, and exhibited extensive resistant profile. Comparative gene expression profile of MRSA1679a and the reference human MRSA strain (ATCC 29213) was performed using Illumina-based transcriptome and RT-qPCR analyses. Several virulence elements including 22 toxin genes were detected in MRSA animal-isolate. In addition, we observed enhanced expression of crucial virulence regulators, such as sarA and KdpDE in MRSA animal-isolate compared to the human isolate. Collectively, gene expression profile including several virulence and drug-resistance factors confirmed the unique and highly virulent determinants of the MRSA strain of poultry origin which warrants further attention due to significant threat to public health.
- Dithiocarbamates effectively inhibit the alpha-carbonic anhydrase from Neisseria gonorrhoeaeGiovannuzzi, Simone; Abutaleb, Nader S.; Hewitt, Chad S.; Carta, Fabrizio; Nocentini, Alessio; Seleem, Mohamed N.; Flaherty, Daniel P.; Supuran, Claudiu T. (Taylor & Francis, 2022-01-01)Recently, inorganic anions and sulphonamides, two of the main classes of zinc-binding carbonic anhydrase inhibitors (CAIs), were investigated for inhibition of the alpha-class carbonic anhydrase (CA, EC 4.2.1.1) from Neisseria gonorrhoeae, NgCA. As an extension to our previous studies, we report that dithiocarbamates (DTCs) derived from primary or secondary amines constitute a class of efficient inhibitors of NgCA. K(I)s ranging between 83.7 and 827 nM were measured for a series of 31 DTCs that incorporated various aliphatic, aromatic, and heterocyclic scaffolds. A subset of DTCs were selected for antimicrobial testing against N. gonorrhoeae, and three molecules displayed minimum inhibitory concentration (MIC) values less than or equal to 8 mu g/mL. As NgCA was recently validated as an antibacterial drug target, the DTCs may lead to development of novel antigonococcal agents.
- Efficacy of short novel antimicrobial and anti-inflammatory peptides in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infectionMohamed, Mohamed F.; Seleem, Mohamed N. (Dove Medical Press, 2014-01-01)The therapeutic efficacy of two novel short antimicrobial and anti-inflammatory peptides (RR and RRIKA) was evaluated in a mouse model of staphylococcal skin infection. RR (2%) and RRIKA (2%) significantly reduced the bacterial counts and the levels of proinflammatory cytokines, tumor necrosis factor (TNF)-α, and interleukin (IL)-6, in methicillin-resistant Staphylococcus aureus USA 300-0114 skin lesions. Furthermore, the combined therapy of RRIKA (1%) and lysostaphin (0.5%) had significantly higher antistaphylococcal and anti-inflammatory activity compared to monotherapy. This study supports the potential use of these peptides for topical treatment of methicillin-resistant Staphylococcus aureus skin infections.