Browsing by Author "Semel, Brandon P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Environmental and anthropogenic influences on movement and foraging in a critically endangered lemur species, Propithecus tattersalli: implications for habitat conservation planningSemel, Meredith A.; Abernathy, Heather N.; Semel, Brandon P.; Cherry, Michael J.; Ratovoson, Tsioriniaina J. C.; Moore, Ignacio T. (2022-04-15)Background Wildlife conservation often focuses on establishing protected areas. However, these conservation zones are frequently established without adequate knowledge of the movement patterns of the species they are designed to protect. Understanding movement and foraging patterns of species in dynamic and diverse habitats can allow managers to develop more effective conservation plans. Threatened lemurs in Madagascar are an example where management plans and protected areas are typically created to encompass large, extant forests rather than consider the overall resource needs of the target species. Methods To gain an understanding of golden-crowned sifaka (Propithecus tattersalli) movement patterns, including space use and habitat selection across their range of inhabited forest types, we combined behavior data with Dynamic Brownian Bridge Movement Models and Resource Selection Functions. We also examined the influence of abiotic, biotic, and anthropogenic factors on home range size, movement rates, and foraging patterns. Results We found that home range size and movement rates differed between seasons, with increased core area size and movement in the rainy season. Forest type also played a role in foraging behavior with sifaka groups in the humid forest avoiding roads in both seasons, groups in the dry deciduous forest avoiding road networks in the rainy season, and groups in the moderate evergreen forest displaying no selection or avoidance of road networks while foraging. Conclusion Our study illustrates the importance of studying primate groups across seasons and forest types, as developing conservation plans from a single snapshot can give an inaccurate assessment of their natural behavior and resources needs of the species. More specifically, by understanding how forest type influences golden-crowned sifaka movement and foraging behavior, conservation management plans can be made to the individual forest types inhabited (dry deciduous, moderate evergreen, humid, littoral, etc.), rather than the region as a whole.
- Factors affecting golden-crowned sifaka (Propithecus tattersalli) densities and strategies for their conservationSemel, Brandon P. (Virginia Tech, 2021-03-24)Habitat degradation and hunting pose the most proximate threats to many primate species, while climate change is expected to exacerbate these threats (habitat and climate change combined henceforth as "global change") and present new challenges. Madagascar's lemurs are earth's most endangered primates, placing added urgency to their conservation in the face of global change. My dissertation focused on the critically endangered golden-crowned sifaka (Propithecus tattersalli; hereafter, "sifaka") which is endemic to fragmented forests across a gradient of dry, moderate, and wet forest types in northeastern Madagascar. I surveyed sifakas across their global range and investigated factors affecting their densities. I explored sifaka diets across different forest types and evaluated if nutritional factors influenced sifaka densities. Lastly, I investigated sifaka range-wide genetic diversity and conducted a connectivity analysis to prioritize corridor-restoration and other potential conservation efforts. Sifaka densities varied widely across forest fragments (6.8 (SE = 2.0-22.8) to 78.1 (SE = 53.1-114.8) sifakas/km²) and populations have declined by as much as 30-43% in 10 years, from ~18,000 to 10,222-12,631 individuals (95% CI: 8,230-15,966). Tree cutting, normalized difference vegetation index (NDVI) during the wet season, and Simpson's diversity index (1-D) predicted sifaka densities range-wide. Sifakas consumed over 101 plant species and spent 27.1% of their active time feeding on buds, flowers, fruits, seeds, and young and mature leaves. Feeding effort and plant part consumption varied by season, forest type, and sex. Minerals in sifaka food items (Mg (β = 0.62, SE = 0.19) and K (β = 0.58, SE = 0.20)) and wet season NDVI (β = 0.43, SE = 0.20) predicted sifaka densities. Genetic measures across forest fragments indicated that sifaka populations are becoming more isolated (moderate FIS values: mean = 0.27, range = 0.11-0.60; high M-ratios: mean = 0.59, range = 0.49-0.82; low overall effective population size: Ne = 139.8-144 sifakas). FST comparisons between fragments (mean = 0.12, range = 0.01-0.30) supported previous findings that sifakas still moved across the fragmented landscape. Further validation of these genetic results is needed. I identified critical corridors that conservation managers could protect and/or expand via active reforestation to ensure the continued existence of this critically-endangered lemur.