Factors affecting golden-crowned sifaka (Propithecus tattersalli) densities and strategies for their conservation
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Habitat degradation and hunting pose the most proximate threats to many primate species, while climate change is expected to exacerbate these threats (habitat and climate change combined henceforth as "global change") and present new challenges. Madagascar's lemurs are earth's most endangered primates, placing added urgency to their conservation in the face of global change. My dissertation focused on the critically endangered golden-crowned sifaka (Propithecus tattersalli; hereafter, "sifaka") which is endemic to fragmented forests across a gradient of dry, moderate, and wet forest types in northeastern Madagascar. I surveyed sifakas across their global range and investigated factors affecting their densities. I explored sifaka diets across different forest types and evaluated if nutritional factors influenced sifaka densities. Lastly, I investigated sifaka range-wide genetic diversity and conducted a connectivity analysis to prioritize corridor-restoration and other potential conservation efforts. Sifaka densities varied widely across forest fragments (6.8 (SE = 2.0-22.8) to 78.1 (SE = 53.1-114.8) sifakas/km²) and populations have declined by as much as 30-43% in 10 years, from ~18,000 to 10,222-12,631 individuals (95% CI: 8,230-15,966). Tree cutting, normalized difference vegetation index (NDVI) during the wet season, and Simpson's diversity index (1-D) predicted sifaka densities range-wide. Sifakas consumed over 101 plant species and spent 27.1% of their active time feeding on buds, flowers, fruits, seeds, and young and mature leaves. Feeding effort and plant part consumption varied by season, forest type, and sex. Minerals in sifaka food items (Mg (β = 0.62, SE = 0.19) and K (β = 0.58, SE = 0.20)) and wet season NDVI (β = 0.43, SE = 0.20) predicted sifaka densities. Genetic measures across forest fragments indicated that sifaka populations are becoming more isolated (moderate FIS values: mean = 0.27, range = 0.11-0.60; high M-ratios: mean = 0.59, range = 0.49-0.82; low overall effective population size: Ne = 139.8-144 sifakas). FST comparisons between fragments (mean = 0.12, range = 0.01-0.30) supported previous findings that sifakas still moved across the fragmented landscape. Further validation of these genetic results is needed. I identified critical corridors that conservation managers could protect and/or expand via active reforestation to ensure the continued existence of this critically-endangered lemur.