Browsing by Author "Silvis, Alexander"
Now showing 1 - 20 of 28
Results Per Page
Sort Options
- Acoustic sampling considerations for bats in the post-white-nose syndrome landscapeBarr, Elaine Lewis (Virginia Tech, 2020-01-27)Bat populations across North America are either facing new threats from white-nose syndrome (WNS) and wind energy development or have already experienced precipitous declines. Accordingly, researchers and managers need to know how to best monitor bats to document population and distribution changes, as well as where to look for persisting populations. Landscape-scale WNS impacts to summer bat populations are not well understood, and although acoustic monitoring is commonly used to monitor these populations, there is limited information about differences among acoustic detectors and the implications to managers thereof. My objectives were to model the relationship between WNS impact, influence of available hibernacula, and environmental factors for summer nightly presence of three WNS-affected bats and to compare how multiple models of acoustic detectors perform in terms of detection probability and nightly recorded bat activity. I collected acoustic data from 10 study areas across Virginia, West Virginia, Ohio and Kentucky to describe changes in nightly presence of WNS-affected bat species during summer 2017. During the same period of time, I compared five types of acoustic detectors at Fort Knox, Kentucky. My results show the potential efficacy of using a WNS impact-year metric to predict summer bat presence, and highlight which environmental variables are relevant for large-scale acoustic monitoring. Additionally, my findings suggest that each of the detector types tested would suffice for most research and monitoring activities, but standardization of detector type within the scope of a project or study should be encouraged.
- Activity Patterns of Bats During the Fall and Spring Along Ridgelines in the Central AppalachiansMuthersbaugh, Michael S.; Ford, W. Mark; Powers, Karen E.; Silvis, Alexander (2019-06)Many central Appalachian ridges offer high wind potential, making them attractive to future wind-energy development. Understanding seasonal and hourly activity patterns of migratory bat species may help to reduce fatalities at wind-energy facilities and provide guidance for the development of best management practices for bats. To examine hourly migratory bat activity patterns in the fall and spring in Virginia in an exploratory fashion with a suite of general temporal, environmental, and weather variables, we acoustically monitored bat activity on five ridgelines and side slopes from early September through mid-November 2015 and 2016 and from early March through late April 2016 and 2017. On ridges, bat activity decreased through the autumn sample period, but was more variable through the spring sample period. In autumn, migratory bat activity had largely ceased by mid-November. Activity patterns were species specific in both autumn and spring sample periods. Generally, migratory bat activity was negatively associated with hourly wind speeds but positively associated with ambient temperatures. These data provide further evidence that operational mitigation strategies at wind-energy facilities could help protect migratory bat species in the Appalachians; substantially slowing or locking wind turbine blade spin during periods of low wind speeds, often below where electricity is generated, and warm ambient temperatures may minimize mortality during periods of high bat activity.
- Activity Patterns of Cave-Dwelling Bat Species during Pre-Hibernation Swarming and Post-Hibernation Emergence in the Central AppalachiansMuthersbaugh, Michael S.; Ford, W. Mark; Silvis, Alexander; Powers, Karen E. (MDPI, 2019-09-06)In North America, bat research efforts largely have focused on summer maternity colonies and winter hibernacula, leaving the immediate pre- and post-hibernation ecology for many species unstudied. Understanding these patterns and processes is critical for addressing potential additive impacts to White-nose Syndrome (WNS)-affected bats, as autumn is a time of vital weight gain and fat resources are largely depleted in early spring in surviving individuals. Our study sought to examine autumn and spring bat activity patterns in the central Appalachian Mountains around three hibernacula to better understand spatio-temporal patterns during staging for hibernation and post-hibernation migration in the post-WNS environment. From early September through November 2015 and 2016, and from early March through April 2016 and 2017, we assessed the effects of distance to hibernacula and ambient conditions on nightly bat activity for Myotis spp. and big brown bats (Eptesicus fuscus) using zero-crossing frequency division bat detectors near cave entrances and 1 km, 2 km, and 3 km distant from caves. Following identification of echolocation calls, we used generalized linear mixed effects models to examine patterns of activity across the landscape over time and relative to weather. Overall bat activity was low at all sample sites during autumn and spring periods except at sites closest to hibernacula. Best-supported models describing bat activity varied, but date and ambient temperatures generally appeared to be major drivers of activity in both seasons. Total activity for all species had largely ceased by mid-November. Spring bat activity was variable across the sampling season, however, some activity was observed as early as mid-March, almost a month earlier than the historically accepted emergence time regionally. Current timing of restrictions on forest management activities that potentially remove day-roosts near hibernacula when bats are active on the landscape may be mismatched with actual spring post-hibernation emergence. Adjustments to the timing of these restrictions during the spring may help to avoid potentially additive negative impacts on WNS-impacted bat species.
- Assessing the Long-term Impacts of White-nose Syndrome on Bat Communities Using Acoustic Surveys at Fort Drum Military InstallationNocera, Tomas (Virginia Tech, 2018-06-12)With declines in abundance and changing distribution of White-nose Syndrome (WNS)-affected bat species, increased reliance on acoustic monitoring is now the new "normal". As such, the ability to accurately identify individual bat species with acoustic identification programs has become increasingly important. Additionally, how bat distribution and habitat associations have changed at the local to sub-landscape scale in the post WNS environment is important to understand. The significance of these changes, relative to bat activity, may be based on the species-specific susceptibility to WNS. We used data collected from Fort Drum Military Installation, New York from the summers of 2003-2017 to analyze the accuracy of acoustic software programs, and assess the changes in relative bat activity, occupancy, and distribution induced by WNS. Our results indicate that continued acoustic monitoring of bat species, such as the little brown bat (Myotis lucifugus) in the Northeast, to assess ongoing temporal and spatial changes, habitat associations, and as a guide to direct future mist-netting should rely more on relative activity as the metric of choice. Furthermore, the continuous spread of WNS across North America will have strong negative effects on bat populations and communities, this study points to how individual species (both impacted and non-impacted) will respond to WNS. We believe that our results can help users choose automated software and MLE thresholds more appropriate for their needs to accurately address potential changes in communities of bat species due to impacts of WNS or other factors.
- Bat activity following repeated prescribed fire in the central Appalachians, USAAustin, Lauren V.; Silvis, Alexander; Muthersbaugh, Michael S.; Powers, Karen E.; Ford, W. Mark (2018-12-27)Background To restore and manage fire-adapted forest communities in the central Appalachians, USA, land managers are now increasingly prioritizing use of prescribed fire. However, it is unclear how the reintroduction of fire following decades of suppression will affect bat communities, particularly where white-nose syndrome-related population declines of many cave-hibernating bat species have occurred. To address this concern, we monitored and compared bat activity in burned and unburned habitat across a temporal gradient in western Virginia. Results We found evidence for slightly positive fire effects on activity levels of the northern long-eared bat (Myotis septentrionalis [Trouessart, 1897]), Indiana bat (Myotis sodalis [Miller and Allen, 1928]), little brown bat (Myotis lucifugus [Le Conte, 1831]), big brown bat (Eptesicus fuscus [Palisot de Beauvois, 1796])/silver-haired bat (Lasionycteris noctivagans [Le Conte, 1831]) group, all high-frequency bats, and all bat species combined. We observed temporal effects only for the big brown bat, with a negative relationship between activity and time since fire. Conclusions Because response of bat activity was neutral to weakly positive relative to burned forest condition, our results suggest that bats are not a resource that would impede the use of this management tool in the central Appalachians.
- Bat Activity Following Restoration Prescribed Burning in the Central Appalachian Upland and Riparian HabitatsAustin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael S.; Powers, Karen E. (2018-04)After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long-fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (Delta AICc < 4) to explain activity of all bat species. Nonetheless, parameter estimates for these conditions were small and confidence intervals overlapped zero for all species, indicating effect sizes were marginal. Our results suggest that bats respond to fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post-fire application.
- Dataset for: Effects of hierarchical roost removal on northern long-eared bat (Myotis septentrionalis) maternity coloniesSilvis, Alexander; Ford, W. Mark; Britzke, Eric R. (2014)The impacts of roost-loss on bats is poorly understood. This dataset was used to assess the impact of controlled roost removal on northern long-eared bat maternity day-roosting social structure, roost selection, and movement. Article: http://hdl.handle.net/10919/85186
- Day-roosting Social Ecology of the Northern Long-eared Bat (Myotis septentrionalis) and the Endangered Indiana Bat (Myotis sodalis)Silvis, Alexander (Virginia Tech, 2014-12-08)Day-roost use by northern long-eared bat (Myotis septentrionalis) maternity colonies on the Fort Knox military reservation, Kentucky, USA, resulted in formation of non-random networks of roosts that exhibited a trend toward centralization. Centralization of day-roost networks was reflected in the social structure of colonies, which were characterized by dense associations among individuals within colonies. Social structure varied among colonies and appeared to be related to reproductive condition; colonies exhibited greater cohesiveness during parturition and lactation. Northern long-eared bat maternity colonies appeared to be exclusive, occupying distinct roosting areas with one or several areas receiving intense use. Day-roost removal simulations suggested a linear relationship between colony fragmentation and roost loss, and that loss of >20% of roosts is required to initiate colony fragmentation. Experimental hierarchical removal of day-roosts yielded results consistent with simulations, as removal of the single most-central (primary) roost had no impact on colony fragmentation, whereas removal of 24% of less-central (secondary) roosts resulted in partial network fragmentation. Patterns of colony day-roost and space use were similar pre- and post-removal treatments. Day-roost removal did not alter the number of roosts used by individual bats, but distances moved between roosts were greater in the secondary roost-removal treatment group. Day-roost characteristics largely were consistent pre-post treatment for both treatment groups. Historical data from an Indiana bat (Myotis sodalis) maternity colony revealed that this species also exhibits a non-random social assorting dynamic. Non-random social assortment resulted in a closely connected centralized network of day-roosts. Individuals within the Indiana bat maternity colony exhibited close social connections with colony members, but subgroups likely existed within the colony. Indiana bat day-roosting ecology appears flexible, as patterns of roost and space use differed substantially between years. Development of specific, but tactical, management approaches for individual colonies of both northern long-eared and Indiana bats may be possible. Such approaches would allow land managers to manage for both northern long-eared bat habitat and other objectives. However, the nature of targeted management approaches employed likely will depend on the unique forest context and dynamic within which individual colonies reside.
- Deriving Habitat Models for Northern Long-Eared Bats from Historical Detection Data: A Case Study Using the Fernow Experimental ForestFord, W. Mark; Silvis, Alexander; Rodrigue, Jane L.; Kniowski, Andrew B.; Johnson, Joshua B. (2016-06)The listing of the northern long-eared bat (Myotis septentrionalis) as federally threatened under the Endangered Species Act following severe population declines from white-nose syndrome presents considerable challenges to natural resource managers. Because the northern long-eared bat is a forest habitat generalist, development of effective conservation measures will depend on appropriate understanding of its habitat relationships at individual locations. However, severely reduced population sizes make gathering data for such models difficult. As a result, historical data may be essential in development of habitat models. To date, there has been little evaluation of how effective historical bat presence data, such as data derived from mist-net captures, acoustic detection, and day-roost locations, may be in developing habitat models, nor is it clear how models created using different data sources may differ. We explored this issue by creating presence probability models for the northern long-eared bat on the Fernow Experimental Forest in the central Appalachian Mountains of West Virginia using a historical, presence-only data set. Each presence data type produced outputs that were dissimilar but that still corresponded with known traits of the northern long-eared bat or are easily explained in the context of the particular data collection protocol. However, our results also highlight potential limitations of individual data types. For example, models from mist-net capture data only showed high probability of presence along the dendritic network of riparian areas, an obvious artifact of sampling methodology. Development of ecological niche and presence models for northern long-eared bat populations could be highly valuable for resource managers going forward with this species. We caution, however, that efforts to create such models should consider the substantial limitations of models derived from historical data, and address model assumptions.
- Distribution of Northern Long-eared Bat Summer Habitat on the Monongahela National Forest, West VirginiaDe La Cruz, Jesse L.; Ford, W. Mark; Jones, Shane; Johnson, Joshua B.; Silvis, Alexander (2023-03)Species distribution models enable resource managers to avoid and mitigate impacts to, or enhance habitat of, target species at the landscape level. Persistent declines of northern long-eared bats (Myotis septentrionalis) due to white-nose syndrome have made acquisition of contemporary data difficult. Therefore, use of legacy data may be necessary for creation of species distribution models. We used historical roost and capture records, both individually and in combination, to assess the distribution and availability of northern long-eared bat habitat across the 670,000-ha Monongahela National Forest (MNF), West Virginia, USA. We created random forest presence/pseudo-absence models to examine influences of various biotic and abiotic predictors on both roosting and foraging presence locations of northern long-eared bats. Predicted northern long-eared bat habitat was abundant (43.1% of the MNF) and widely dispersed. Generally, all models suggested that northern long-eared bat habitat was characterized by interior forests containing linear edge features. We observed only 3.4% spatial overlap of habitat based on complete model agreement, but 38.5% of all habitat areas resulted from agreement between capture-only and combination models. Our models provide important assessments of habitat availability necessary for addressing state and federal conservation requirements on the MNF and adjacent eastern West Virginia mountains.
- Distribution of Summer Habitat for the Indiana Bat on the Monongahela National Forest, West VirginiaDe La Cruz, Jesse L.; Ford, W. Mark; Jones, Shane; Johnson, Joshua B.; Silvis, Alexander (2023-03)Hierarchical conservation and management of Indiana bat (Myotis sodalis) habitat may benefit from use of species distribution models. White-nose syndrome has caused additional declines for this endangered bat, requiring use of historical presence locations for habitat-related analyses. We created random forest presence/pseudo-absence models to assess the distribution and availability of Indiana bat habitat across the 670,000-ha Monongahela National Forest (MNF), West Virginia, USA. We collated historical roost and capture locations, both individually and in combination, to examine impacts of various biotic and abiotic predictors on roosting and foraging habitat of Indiana bats. Our final concordance map suggests that Indiana bat habitat was abundant (37.2% of the MNF) but localized, with predicted suitable areas often associated with edges of dry-calcareous forests. We observed significant variation between models, with the capture-only model independently identifying the greatest amount of potential habitat (47.8%). However, 21.9% of all potential Indiana bat habitat was identified by complete inter-model agreement. Our SDM outputs may assist land managers in identifying avoidance areas and new survey sites (i.e., capture and acoustic sampling) to support forest management activities.
- Distribution Probability of the Virginia Northern Flying Squirrel in the High Allegheny MountainsFord, W. Mark; Diggins, Corinne A.; De La Cruz, Jesse L.; Silvis, Alexander (2022-03)In the central Appalachians of Virginia and West Virginia, the Virginia northern flying squirrel (Glaucomys sabrinus fuscus; VNFS) is a subspecies of northern flying squirrel generally associated with red spruce (Picea rubens)-dominated forests at high elevations. Listed as endangered by the U.S. Fish and Wildlife Service from 1985 to 2013, the VNFS currently is the subject of a 10-year post-delisting assessment. Still considered a state-listed species in Virginia and a species of greatest conservation need in West Virginia, the VNFS serves as a focal target for red spruce restoration activities in the High Allegheny Region (HAR) of the two states. Owing to the cryptic nature of VNFS and its low detection probability in live-capture surveys, managers in the region rely on habitat models to assess probable presence. Using long-term nest-box, live-trapping, and radio-telemetry data matched with updated high elevation forest-type coverage data for the region, we created a new VNFS resource selection function and spatial coverage map. Inputting red spruce cover, increasing elevation, and decreasing landform index (increasing site shelteredness) composed the best model explaining VNFS occurrence. The calculated amount of low-quality habitat was congruent with previous modeling efforts; however, inclusion of more VNFS occurrence records in the current effort indicated that previous efforts substantially underestimated the amount (>400%) of extant high quality VNFS habitat. We estimate the HAR to contain approximately 197,952 ha with ≥0.50 predicted probability of occurrence of VNFS. In addition to potentially improving current and future VNFS live-capture surveys, with this model managers may better target forests for red spruce restoration to increase high elevation forest ecological integrity and to improve habitat patch connectedness for VNFS.
- Effects of Environmental Clutter on Synthesized Chiropteran Echolocation Signals in an Anechoic ChamberFreeze, Samuel R.; Shirazi, Masoud; Abaid, Nicole; Ford, W. Mark; Silvis, Alexander; Hakkenberg, Dawn (MDPI, 2021-06-11)Ultrasonic bat detectors are useful for research and monitoring purposes to assess occupancy and relative activity of bat communities. Environmental “clutter” such as tree boles and foliage can affect the recording quality and identification of bat echolocation calls collected using ultrasonic detectors. It can also affect the transmission of calls and recognition by bats when using acoustic lure devices to attract bats to mist-nets. Bat detectors are often placed in forests, yet automatic identification programs are trained on call libraries using echolocation passes recorded largely from open spaces. Research indicates that using clutter-recorded calls can increase classification accuracy for some bat species and decrease accuracy for others, but a detailed understanding of how clutter impacts the recording and identification of echolocation calls remains elusive. To clarify this, we experimentally investigated how two measures of clutter (i.e., total basal area and number of stems of simulated woody growth, as well as recording angle) affected the recording and classification of a synthesized echolocation signal under controlled conditions in an anechoic chamber. Recording angle (i.e., receiver position relative to emitter) significantly influenced the probability of correct classification and differed significantly for many of the call parameters measured. The probability of recording echo pulses was also a function of clutter but only for the detector angle at 0° from the emitter that could receive deflected pulses. Overall, the two clutter metrics were overshadowed by proximity and angle of the receiver to the sound source but some deviations from the synthesized call in terms of maximum, minimum, and mean frequency parameters were observed. Results from our work may aid efforts to better understand underlying environmental conditions that produce false-positive and -negative identifications for bat species of interest and how this could be used to adjust survey accuracy estimates. Our results also help pave the way for future research into the development of acoustic lure technology by exploring the effects of environmental clutter on ultrasound transmission.
- Effects of Hierarchical Roost Removal on Northern Long-Eared Bat (Myotis septentrionalis) Maternity ColoniesSilvis, Alexander; Ford, W. Mark; Britzke, Eric R. (PLOS, 2015-01-22)Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range. Data: http://hdl.handle.net/10919/50954
- Effects of historic wildfire and prescribed fire on site occupancy of bats in Shenandoah National Park, Virginia, USAAustin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Powers, Karen E. (2020-08)Given the likelihood of regional extirpation of several once-common bat species in eastern North America from white-nose syndrome, it is critical that the impacts of forest management activities, such as prescribed fire, are known in order to minimize potentially additive negative effects on bat populations. Historic wildfires may offer a suitable surrogate to assess long-term burn impacts on bats for planning, implementing and assessing burn programs. To examine the effects of historic fire on bats, we sampled bat activities at 24 transect locations in burned and unburned forest stands in the central Appalachian Mountains of Shenandoah National Park (SNP), Virginia, USA. There was limited evidence of positive fire effects over time on hoary bats (Lasiurus cinereusBeauvois) and big brown bats (Eptesicus fuscusBeauvois) occupancy. Overall, there were few or mostly equivocal relationships of bat occupancy relative to burn conditions or time since fire in SNP across species using a false-positive occupancy approach. Our results suggest that fire does not strongly affect bat site occupancy short- or long-term in the central Appalachians.
- Forest Succession and Maternity Day Roost Selection by Myotis septentrionalis in a Mesophytic Hardwood ForestSilvis, Alexander; Ford, W. Mark; Britzke, Eric R.; Beane, Nathan R.; Johnson, Joshua B. (Hindawi, 2012-09-20)Conservation of summer maternity roosts is considered critical for bat management in North America, yet many aspects of the physical and environmental factors that drive roost selection are poorly understood. We tracked 58 female northern bats (Myotis septentrionalis) to 105 roost trees of 21 species on the Fort Knox military reservation in north-central Kentucky during the summer of 2011. Sassafras (Sassafras albidum) was used as a day roost more than expected based on forest stand-level availability and accounted for 48.6% of all observed day roosts. Using logistic regression and an information theoretic approach, we were unable to reliably differentiate between sassafras and other roost species or between day roosts used during different maternity periods using models representative of individual tree metrics, site metrics, topographic location, or combinations of these factors. For northern bats, we suggest that day-roost selection is not a function of differences between individual tree species per se, but rather of forest successional patterns, stand and tree structure. Present successional trajectories may not provide this particular selected structure again without management intervention, thereby suggesting that resource managers take a relatively long retrospective view to manage current and future forest conditions for bats.
- Impacts of Fire on Bats in the Central AppalachiansAustin, Lauren V. (Virginia Tech, 2017-07-10)Fire occurrence was widespread in the central Appalachians pre-European settlement due to Native American ignition and occasional lightning strikes, and continued through European settlement. During this time, low to mixed severity burns supported a suite of ecological communities that were fire adapted. In the mid-20th century, the frequency and intensity of fire decreased regionally, resulting in profound forest composition shifts. Land managers now are prioritizing prescribed fire as a restoration tool in current and transitioning fire dependent communities. However, it is unclear how the re-introduction of fire will affect bat community assemblages, particularly after the severe White-nose Syndrome related population declines of many cave-hibernating bat species. To address this concern we used acoustic detectors to sample bat activity levels in burned and unburned environments to examine habitat and temporal effects of fire on bat species in a repeatedly burned landscape. We found evidence for weak positive fire effects on the northern long-eared bat, Indiana bat, little brown bat, big brown bat/silver-haired bat group, high frequency phonic group, and total bat activity. Temporal effects of fire were only apparent for the big brown bat, where we observed a negative relationship between activity and time since fire. Additionally, historic wildfires may offer a suitable surrogate to assess long-term burn impacts on bats, which in turn can be used to better inform bat and prescribed fire relationships. To examine effects of historic fire on bats, we assessed bat presence using acoustic detections at 16 paired burned and unburned forest stands in Shenandoah National Park. Overall, we found few or mostly equivocal relationships of bat occupancy across species relative to burn condition or time since fire at SNP, indicating there is little evidence to support the concept that fire has a significant ecological effect on bats in this portion of the central Appalachians. Riparian areas are particularly important for bats, and serve as foraging and drinking areas, roost sites, and travel corridors. Because fire impacts dry upland and mesic riparian areas differently, is possible that fire will impact bats differently in burned and riparian habitats. To examine fire effects on bats in riparian and upland habitats, we used paired sampling to monitor bat activity in burned, unburned, riparian, and non-riparian areas. Burn and riparian variables had empirical support to explain activity of all bat species. However, coefficients for these species were small and confidence intervals overlapped zero indicating that differences between habitat configurations were marginal. Our results suggest bats have somewhat species-specific responses to fire that differ between upland and riparian habitats, but that large landscape level prescribed fire has a slightly positive to neutral impact on all bats species identified in at our study site post-fire suppression.
- Let's Agree to Disagree: Comparing Auto-Acoustic Identification Programs for Northeastern BatsNocera, Tomas; Ford, W. Mark; Silvis, Alexander; Dobony, Christopher A. (2019-12)With the declines in abundance and changing distribution of white-nose syndrome-affected bat species, increased reliance on acoustic monitoring is now the new "normal." As such, the ability to accurately identify individual bat species with acoustic identification programs has become increasingly important. We assessed rates of disagreement between the three U.S. Fish and Wildlife Service-approved acoustic identification software programs (Kaleidoscope Pro 4.2.0, Echoclass 3.1, and Bat Call Identification 2.7d) and manual visual identification using acoustic data collected during summers from 2003 to 2017 at Fort Drum, New York. We assessed the percentage of agreement between programs through pairwise comparisons on a total nightly count level, individual file level (e.g., individual echolocation pass call file), and grouped maximum likelihood estimate level (e.g., probability values that a species is misclassified as present when in fact it is absent) using preplanned contrasts, Akaike Information Criterion, and annual confusion matrices. Interprogram agreement on an individual file level was low, as measured by Cohen's Kappa (0.2-0.6). However, site-night level pairwise comparative analysis indicated that program agreement was higher (40-90%) using single season occupancy metrics. In comparing analytical outcomes of our different datasets (i.e., how comparable programs and visual identification are regarding the relationship between environmental conditions and bat activity), we determined high levels of congruency in the relative rankings of the model as well as the relative level of support for each individual model. This indicated that among individual software packages, when analyzing bat calls, there was consistent ecological inference beyond the file-by-file level at the scales used by managers. Depending on objectives, we believe our results can help users choose automated software and maximum likelihood estimate thresholds more appropriate for their needs and allow for better cross-comparison of studies using different automated acoustic software.
- Maximum Likelihood Estimator and Nightly Acoustic Count Values as Weight of Evidence of Bat Maternity ActivityFord, W. Mark; Thorne, Emily D.; Silvis, Alexander; Barr, Elaine L.; Armstrong, Michael P.; King, R. Andrew (2023-03)Since the spread of white-nose syndrome in North America, several bat species have shown precipitous declines in abundance and distribution. With lower netting detection probabilities for the currently threatened but proposed endangered northern long-eared bat (Myotis septentrionalis) and endangered Indiana bats (Myotis sodalis), determination of presence or absence for regulatory clearance often has shifted to the use of acoustic surveys. However, acoustic surveys are unable to differentiate between non-reproductive individuals versus a maternity colony. We used recorded nightly echolocation pass counts of bat species-specific probabilities with maximum likelihood estimator (MLE) scores to determine thresholds by cover type and reproductive period whereby the potential for northern long-eared bat or Indiana bat maternity colonies occurs. Where nightly MLE P-values were < 0.05) were higher for sites with observed maternity activity for both bat species across forest, forest-field edge, and riparian areas versus sites where no maternity activity was known. For northern long-eared bats, nightly pass counts were highest in the juvenile volancy period (after 15 July) whereas, for Indiana bats, nightly pass counts were highest in the lactation period (16 June to 15 July). Except for edge conditions for northern long-eared bats, a MLE P < 0.05 combined with nightly pass counts above thresholds developed from surveys at known maternity colony sites for both species may indicate potential presence of a maternity colony locally and provide a tool to more efficiently use targeted mist-netting for further determination.
- Mid-Atlantic Big Brown and Eastern Red Bats: Relationships between Acoustic Activity and Reproductive PhenologyDeeley, Sabrina; Ford, W. Mark; Kalen, Nicholas J.; Freeze, Samuel R.; St. Germain, Michael; Muthersbaugh, Michael; Barr, Elaine; Kniowski, Andrew; Silvis, Alexander; De La Cruz, Jesse (MDPI, 2022-04-21)Acoustic data are often used to describe bat activity, including habitat use within the summer reproductive period. These data inform management activities that potentially impact bats, currently a taxa of high conservation concern. To understand the relationship between acoustic and reproductive timing, we sampled big brown bats (Eptesicus fuscus) and eastern red bats (Lasiurus borealis) on 482 mist-netting and 35,410 passive acoustic sampling nights within the District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia, 2015-2018. We documented the proportion of female, pregnant, lactating, and juvenile big brown and eastern red bats within each mist-net sampling event and calculated locally estimated non-parametric scatterplot smoothing (LOESS) lines for each reproductive and acoustic dataset. We compared the peak in acoustic activity with the peaks of each reproductive condition. We determined that the highest levels of acoustic activity within the maternity season were most associated with the period wherein we captured the highest proportions of lactating bats, not juvenile bats, as often assumed.