Browsing by Author "Stuckner, Joshua"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Gaining new insights into nanoporous gold by mining and analysis of published imagesMcCue, Ian; Stuckner, Joshua; Murayama, Mitsuhiro; Demkowicz, Michael J. (Springer Nature, 2018-04-30)One way of expediting materials development is to decrease the need for new experiments by making greater use of published literature. Here, we use data mining and automated image analysis to gather new insights on nanoporous gold (NPG) without conducting additional experiments or simulations. NPG is a three-dimensional porous network that has found applications in catalysis, sensing, and actuation. We assemble and analyze published images from among thousands of publications on NPG. These images allow us to infer a quantitative description of NPG coarsening as a function of time and temperature, including the coarsening exponent and activation energy. They also demonstrate that relative density and ligament size in NPG are not correlated, indicating that these microstructure features are independently tunable. Our investigation leads us to propose improved reporting guidelines that will enhance the utility of future publications in the field of dealloyed materials.
- Ultra-Fast Electron Microscopic Imaging of Single Molecules With a Direct Electron Detection Camera and Noise ReductionStuckner, Joshua; Shimizu, Toshiki; Harano, Koji; Nakamura, Eiichi; Murayama, Mitsuhiro (2020-08)Time-resolved imaging of molecules and materials made of light elements is an emerging field of transmission electron microscopy (TEM), and the recent development of direct electron detection cameras, capable of taking as many as 1,600 fps, has potentially broadened the scope of the time-resolved TEM imaging in chemistry and nanotechnology. However, such a high frame rate reduces electron dose per frame, lowers the signal-to-noise ratio (SNR), and renders the molecular images practically invisible. Here, we examined image noise reduction to take the best advantage of fast cameras and concluded that the Chambolle total variation denoising algorithm is the method of choice, as illustrated for imaging of a molecule in the 1D hollow space of a carbon nanotube with similar to 1 ms time resolution. Through the systematic comparison of the performance of multiple denoising algorithms, we found that the Chambolle algorithm improves the SNR by more than an order of magnitude when applied to TEM images taken at a low electron dose as required for imaging at around 1,000 fps. Open-source code and a standalone application to apply Chambolle denoising to TEM images and video frames are available for download.