Browsing by Author "Tewari, Bhanu P."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Development and implementation of a scalable and versatile test for COVID-19 diagnostics in rural communitiesCeci, Alessandro; Muñoz-Ballester, Carmen; Tegge, Allison N.; Brown, Katherine L.; Umans, Robyn A.; Michel, F. Marc; Patel, Dipankumar; Tewari, Bhanu P.; Martin, James E.; Alcoreza, Oscar Jr.; Maynard, Thomas M.; Martinez-Martinez, Daniel; Bordwine, Paige; Bissell, Noelle; Friedlander, Michael J.; Sontheimer, Harald; Finkielstein, Carla V. (Nature Publishing Group, 2021-07-20)Rapid and widespread testing of severe acute respiratory coronavirus 2 (SARS-CoV-2) is essential for an effective public health response aimed at containing and mitigating the coronavirus disease 2019 (COVID-19) pandemic. Successful health policy implementation relies on early identification of infected individuals and extensive contact tracing. However, rural communities, where resources for testing are sparse or simply absent, face distinctive challenges to achieving this success. Accordingly, we report the development of an academic, public land grant University laboratory-based detection assay for the identification of SARS-CoV-2 in samples from various clinical specimens that can be readily deployed in areas where access to testing is limited. The test, which is a quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based procedure, was validated on samples provided by the state laboratory and submitted for FDA Emergency Use Authorization. Our test exhibits comparable sensitivity and exceeds specificity and inclusivity values compared to other molecular assays. Additionally, this test can be re-configured to meet supply chain shortages, modified for scale up demands, and is amenable to several clinical specimens. Test development also involved 3D engineering critical supplies and formulating a stable collection media that allowed samples to be transported for hours over a dispersed rural region without the need for a cold-chain. These two elements that were critical when shortages impacted testing and when personnel needed to reach areas that were geographically isolated from the testing center. Overall, using a robust, easy-to-adapt methodology, we show that an academic laboratory can supplement COVID-19 testing needs and help local health departments assess and manage outbreaks. This additional testing capacity is particularly germane for smaller cities and rural regions that would otherwise be unable to meet the testing demand.
- Dysregulation of Ambient Glutamate and Glutamate Receptors in Epilepsy: An Astrocytic PerspectiveAlcoreza, Oscar Jr.; Patel, Dipan C.; Tewari, Bhanu P.; Sontheimer, Harald (2021-03-22)Given the important functions that glutamate serves in excitatory neurotransmission, understanding the regulation of glutamate in physiological and pathological states is critical to devising novel therapies to treat epilepsy. Exclusive expression of pyruvate carboxylase and glutamine synthetase in astrocytes positions astrocytes as essential regulators of glutamate in the central nervous system (CNS). Additionally, astrocytes can significantly alter the volume of the extracellular space (ECS) in the CNS due to their expression of the bi-directional water channel, aquaporin-4, which are enriched at perivascular endfeet. Rapid ECS shrinkage has been observed following epileptiform activity and can inherently concentrate ions and neurotransmitters including glutamate. This review highlights our emerging knowledge on the various potential contributions of astrocytes to epilepsy, particularly supporting the notion that astrocytes may be involved in seizure initiation via failure of homeostatic responses that lead to increased ambient glutamate. We also review the mechanisms whereby ambient glutamate can influence neuronal excitability, including via generation of the glutamate receptor subunit GluN2B-mediated slow inward currents, as well as indirectly affect neuronal excitability via actions on metabotropic glutamate receptors that can potentiate GluN2B currents and influence neuronal glutamate release probabilities. Additionally, we discuss evidence for upregulation of System xc-, a cystine/glutamate antiporter expressed on astrocytes, in epileptic tissue and changes in expression patterns of glutamate receptors.
- Glioma-induced peritumoral hyperexcitability in a pediatric glioma modelChaunsali, Lata; Tewari, Bhanu P.; Gallucci, Allison; Thompson, Emily G.; Savoia, Andrew; Feld, Noah; Campbell, Susan L. (Wiley, 2020-10-01)Epileptic seizures are among the most common presenting symptom in patients with glioma. The etiology of glioma-related seizures is complex and not completely understood. Studies using adult glioma patient tissue and adult glioma mouse models, show that neurons adjacent to the tumor mass, peritumoral neurons, are hyperexcitable and contribute to seizures. Although it is established that there are phenotypic and genotypic distinctions in gliomas from adult and pediatric patients, it is unknown whether these established differences in pediatric glioma biology and the microenvironment in which these glioma cells harbor, the developing brain, differentially impacts surrounding neurons. In the present study, we examine the effect of patient-derived pediatric glioma cells on the function of peritumoral neurons using two pediatric glioma models. Pediatric glioma cells were intracranially injected into the cerebrum of postnatal days 2 and 3 (p2/3) mouse pups for 7 days. Electrophysiological recordings showed that cortical layer 2/3 peritumoral neurons exhibited significant differences in their intrinsic properties compared to those of sham control neurons. Peritumoral neurons fired significantly more action potentials in response to smaller current injection and exhibited a depolarization block in response to higher current injection. The threshold for eliciting an action potential and pharmacologically induced epileptiform activity was lower in peritumoral neurons compared to sham. Our findings suggest that pediatric glioma cells increase excitability in the developing peritumoral neurons by exhibiting early onset of depolarization block, which was not previously observed in adult glioma peritumoral neurons.
- Pericyte Progenitor Coupling to the Emerging Endothelium during Vasculogenesis via Connexin43Payne, Laura Beth; Tewari, Bhanu P.; Dunkenberger, Logan; Bond, Samantha; Savelli, Alyssa; Darden, Jordan; Zhao, Huaning; Willi, Caroline; Kanodia, Ronak; Gude, Rosalie; Powell, Michael D.; Oestreich, Kenneth J.; Sontheimer, Harald; Dal-Pra, Sophie; Chappell, John C. (Lippincott Williams & Wilkins, 2022-04-01)Background: Vascular pericytes stabilize blood vessels and contribute to their maturation, while playing other key roles in microvascular function. Nevertheless, relatively little is known about involvement of their precursors in the earliest stages of vascular development, specifically during vasculogenesis. Methods: We combined high-power, time-lapse imaging with transcriptional profiling of emerging pericytes and endothelial cells in reporter mouse and cell lines. We also analyzed conditional transgenic animals deficient in Cx43/Gja1 (connexin 43/gap junction alpha-1) expression within Ng2+ cells. Results: A subset of Ng2-DsRed+ cells, likely pericyte/mural cell precursors, arose alongside endothelial cell differentiation and organization and physically engaged vasculogenic endothelium in vivo and in vitro. We found no overlap between this population of differentiating pericyte/mural progenitors and other lineages including hemangiogenic and neuronal/glial cell types. We also observed cell-cell coupling and identified Cx43-based gap junctions contributing to pericyte-endothelial cell precursor communication during vascular assembly. Genetic loss of Cx43/Gja1 in Ng2+ pericyte progenitors compromised embryonic blood vessel formation in a subset of animals, while surviving mutants displayed little-to-no vessel abnormalities, suggesting a resilience to Cx43/Gja1 loss in Ng2+ cells or potential compensation by additional connexin isoforms. Conclusions: Together, our data suggest that a distinct pericyte lineage emerges alongside vasculogenesis and directly communicates with the nascent endothelium via Cx43 during early vessel formation. Cx43/Gja1 loss in pericyte/mural cell progenitors can induce embryonic vessel dysmorphogenesis, but alternate connexin isoforms may be able to compensate. These data provide insight that may reshape the current framework of vascular development and may also inform tissue revascularization/vascularization strategies.
- Perineuronal Net Dynamics in the Pathophysiology of EpilepsyChaunsali, Lata; Tewari, Bhanu P.; Sontheimer, Harald (2021-05-27)Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) assemblies of polyanionic chondroitin sulfate proteoglycans, hyaluronan, and tenascins that primarily wrap around GABAergic parvalbumin (PV) interneurons. During development, PNN formation terminates the critical period of neuroplasticity, a process that can be reversed by experimental disruption of PNNs. Perineuronal nets also regulate the intrinsic properties of the enclosed PV neurons thereby maintaining their inhibitory activity. Recent studies have implicated PNNs in central nervous system diseases as well as PV neuron dysfunction; consequently, they have further been associated with altered inhibition, particularly in the genesis of epilepsy. A wide range of seizure presentations in human and rodent models exhibit ECM remodeling with PNN disruption due to elevated protease activity. Inhibition of PNN proteolysis reduces seizure activity suggesting that PNN degrading enzymes may be potential novel therapeutic targets.
- Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsyTewari, Bhanu P.; Chaunsali, Lata; Campbell, Susan L.; Patel, Dipan C.; Goode, Adam E.; Sontheimer, Harald (Springer Nature, 2018-11-09)Brain tumor patients commonly present with epileptic seizures. We show that tumor-associated seizures are the consequence of impaired GABAergic inhibition due to an overall loss of peritumoral fast spiking interneurons (FSNs) concomitant with a significantly reduced firing rate of those that remain. The reduced firing is due to the degradation of perineuronal nets (PNNs) that surround FSNs. We show that PNNs decrease specific membrane capacitance of FSNs permitting them to fire action potentials at supra-physiological frequencies. Tumor-released proteolytic enzymes degrade PNNs, resulting in increased membrane capacitance, reduced firing, and hence decreased GABA release. These studies uncovered a hitherto unknown role of PNNs as an electrostatic insulator that reduces specific membrane capacitance, functionally akin to myelin sheaths around axons, thereby permitting FSNs to exceed physiological firing rates. Disruption of PNNs may similarly account for excitation-inhibition imbalances in other forms of epilepsy and PNN protection through proteolytic inhibition may provide therapeutic benefits.
- Sulfasalazine decreases mouse cortical hyperexcitabilityAlcoreza, Oscar Jr.; Tewari, Bhanu P.; Bouslog, Allison; Savoia, Andrew; Sontheimer, Harald; Campbell, Susan L. (Wiley, 2019-05-22)Objective: Currently prescribed antiepileptic drugs (AEDs) are ineffective in treating approximately 30% of epilepsy patients. Sulfasalazine (SAS) is an US Food and Drug Administration (FDA)–approved drug for the treatment of Crohn disease that has been shown to inhibit the cystine/glutamate antiporter system xc‐ (SXC) and decrease tumor‐associated seizures. This study evaluates the effect of SAS on distinct pharmacologically induced network excitability and determines whether it can further decrease hyperexcitability when administered with currently prescribed AEDs. Methods: Using in vitro cortical mouse brain slices, whole‐cell patch‐clamp recordings were made from layer 2/3 pyramidal neurons. Epileptiform activity was induced with bicuculline (bic), 4‐aminopyridine (4‐AP) and magnesium‐free (Mg2+‐free) solution to determine the effect of SAS on epileptiform events. In addition, voltagesensitive dye (VSD) recordings were performed to characterize the effect of SAS on the spatiotemporal spread of hyperexcitable network activity and compared to currently prescribed AEDs. Results: SAS decreased evoked excitatory postsynaptic currents (eEPSCs) and increased the decay kinetics of evoked inhibitory postsynaptic currents (eIPSCs) in layer 2/3 pyramidal neurons. Although application of SAS to bic and Mg2+‐free–induced epileptiform activity caused a decrease in the duration of epileptiform events, SAS completely blocked 4‐AP–induced epileptiform events. In VSD recordings, SAS decreased VSD optical signals induced by 4‐AP. Co‐application of SAS with the AED topiramate (TPM) caused a significantly further decrease in the spatiotemporal spread of VSD optical signals. Significance: Taken together this study provides evidence that inhibition of SXC by SAS can decrease network hyperexcitability induced by three distinct pharmacologic agents in the superficial layers of the cortex. Furthermore, SAS provided additional suppression of 4‐AP–induced network activity when administered with the currently prescribed AED TPM. These findings may serve as a foundation to assess the potential for SAS or other compounds that selectively target SXC as an adjuvant treatment for epilepsy.