VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Sulfasalazine decreases mouse cortical hyperexcitability

Files

TR Number

Date

2019-05-22

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

Objective: Currently prescribed antiepileptic drugs (AEDs) are ineffective in treating approximately 30% of epilepsy patients. Sulfasalazine (SAS) is an US Food and Drug Administration (FDA)–approved drug for the treatment of Crohn disease that has been shown to inhibit the cystine/glutamate antiporter system xc‐ (SXC) and decrease tumor‐associated seizures. This study evaluates the effect of SAS on distinct pharmacologically induced network excitability and determines whether it can further decrease hyperexcitability when administered with currently prescribed AEDs. Methods: Using in vitro cortical mouse brain slices, whole‐cell patch‐clamp recordings were made from layer 2/3 pyramidal neurons. Epileptiform activity was induced with bicuculline (bic), 4‐aminopyridine (4‐AP) and magnesium‐free (Mg2+‐free) solution to determine the effect of SAS on epileptiform events. In addition, voltagesensitive dye (VSD) recordings were performed to characterize the effect of SAS on the spatiotemporal spread of hyperexcitable network activity and compared to currently prescribed AEDs. Results: SAS decreased evoked excitatory postsynaptic currents (eEPSCs) and increased the decay kinetics of evoked inhibitory postsynaptic currents (eIPSCs) in layer 2/3 pyramidal neurons. Although application of SAS to bic and Mg2+‐free–induced epileptiform activity caused a decrease in the duration of epileptiform events, SAS completely blocked 4‐AP–induced epileptiform events. In VSD recordings, SAS decreased VSD optical signals induced by 4‐AP. Co‐application of SAS with the AED topiramate (TPM) caused a significantly further decrease in the spatiotemporal spread of VSD optical signals. Significance: Taken together this study provides evidence that inhibition of SXC by SAS can decrease network hyperexcitability induced by three distinct pharmacologic agents in the superficial layers of the cortex. Furthermore, SAS provided additional suppression of 4‐AP–induced network activity when administered with the currently prescribed AED TPM. These findings may serve as a foundation to assess the potential for SAS or other compounds that selectively target SXC as an adjuvant treatment for epilepsy.

Description

Keywords

antiepileptic drugs, epilepsy, seizure, sulfasalazine, system xc‐

Citation