Browsing by Author "Tian, Zhenhua"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Acousto-dielectric tweezers enable independent manipulation of multiple particlesShen, Liang; Tian, Zhenhua; Yang, Kaichun; Rich, Joseph; Zhang, Jinxin; Xia, Jianping; Collyer, Wesley; Lu, Brandon; Hao, Nanjing; Pei, Zhichao; Chen, Chuyi; Huang, Tony Jun (AAAS, 2024-08)Acoustic tweezers have gained substantial interest in biology, engineering, and materials science for their label-free, precise, contactless, and programmable manipulation of small objects. However, acoustic tweezers cannot independently manipulate multiple microparticles simultaneously. This study introduces acousto-dielectric tweezers capable of independently manipulating multiple microparticles and precise control over intercellular distances and cyclical cell pairing and separation for detailed cell-cell interaction analysis. Our acousto-dielectric tweezers leverage the competition between acoustic radiation forces, generated by standing surface acoustic waves (SAWs), and dielectrophoretic (DEP) forces, induced by gradient electric fields. Modulating these fields allows for the precise positioning of individual microparticles at points where acoustic radiation and DEP forces are in equilibrium. This mechanism enables the simultaneous movement of multiple microparticles along specified paths as well as cyclical cell pairing and separation. We anticipate our acousto-dielectric tweezers to have enormous potential in colloidal assembly, cell-cell interaction studies, disease diagnostics, and tissue engineering.
- Experimental and numerical investigation of steady-state and transient ultrasound directed self-assembly of spherical particles in a viscous mediumNoparast, Soheyl (Virginia Tech, 2024-06-04)Ultrasound directed self-assembly (DSA) utilizes the acoustic radiation force associated with a standing ultrasound wave field to organize particles dispersed in a fluid medium into specific patterns. The ability to tailor the organization and packing density of spherical particles using ultrasound DSA in a viscous fluid medium is crucial in the context of (additive) manufacturing of engineered materials with tailored properties. However, the fundamental physics of the ultrasound DSA process in a viscous fluid medium, and the relationship between the ultrasound DSA process parameters and the specific patterns of particles that result from it, are not well-understood. Researchers have theoretically described the acoustic radiation force and the acoustic interaction force that act on spherical particles in a standing ultrasound wave field in both inviscid and viscous media. In addition, they have solved the forward and inverse ultrasound DSA problem in an inviscid medium, in which they relate the patterns of particles and the ultrasound DSA operating parameters. However, no theoretical model exists that allows simulating the steady-state and transient local particle packing density in a viscous medium during ultrasound DSA. Thus, in this dissertation, we (i) theoretically derive and experimentally validate a model to determine the steady-state locations where spherical particles assemble during ultrasound DSA as a function of medium viscosity and particle volume fraction. (ii) We also theoretically derive and experimentally validate a model to quantify the steady-state and transient local packing density of spherical particles within the pattern features that result from ultrasound DSA. Using these models, we quantify and predict the locations where spherical particles assemble during ultrasound DSA in a viscous medium, considering the effects of medium viscosity and particle volume fraction. We demonstrate that the deviation between locations where particles assemble in viscous and inviscid media first increases and then decreases with increasing particle volume fraction and medium viscosity, which we explain by means of the sound propagation velocity of the mixture. In addition, we quantify and predict the steady-state and transient local packing density of spherical particles within the pattern features, using ultrasound DSA in combination with vat photopolymerization (VP). We show that the steady-state local particle packing density increases with increasing particle volume fraction and increases with decreasing particle size. We also show that the transient local particle packing density increases with increasing particle volume fraction, decreasing particle size, and decreasing fluid medium viscosity. Increasing particle size and decreasing fluid medium viscosity decreases the time to reach steady-state. Finally, we implement single and multiple scattering in the calculation of the acoustic radiation force for spherical particles in a viscous medium and quantify their relative contributions to the calculation of the acoustic radiation force as a function of ultrasound DSA operating parameters and material properties. We demonstrate that the deviation between considering single and multiple scattering may reach up to 100%, depending on the ultrasound DSA process parameters and material properties. Also, increasing the particle volume fraction increases the need to account for multiple scattering. Quantifying and predicting the local packing density of spherical particles during ultrasound DSA in a viscous medium, as a function of ultrasound DSA process parameters is crucial towards using ultrasound DSA in engineering applications, in particular (additive) manufacturing of engineered polymer matrix composite materials with tailored properties whose properties depend on the spatial organization and packing density of particles in the matrix material.
- A general Metal-Ion-Modification route for preparing hydrophobic paper and tableware from lignocellulose fibersNayanathara, R. M. Oshani; Leng, Weiqi; Liyanage, Senal D.; Wang, Xiang; Wang, Lu; Wang, Jinwu; Tian, Zhenhua; Pittman, Charles U.; Gwaltney, Steven R.; Zhang, Xuefeng (Elsevier, 2023-03)Inherent hydrophilicity and poor water resistance prevent using lignocellulosic materials as green plastic al- ternatives to fossil fuel-based plastics. Here, we report a facile metal-ion-modification (MIM) route, swelling with aqueous metal ion solutions, and drying to convert conventional hydrophilic paper and wood pulp into biode- gradable hydrophobic paper and tableware without the addition of hydrophobic sizing chemicals/materials. Metal ions such as Fe3+ and Zr4+ can coordinate with pulp fibers' polar groups (i.e., OH, C-O, and COOH) that induce self-assembly of their surface fibrillated "hairy" cellulose nanofibrils to form a more compact structure with fewer available OH groups for water sorption. This decreases the surface energy of pulp fibers and increases their hydrophobicity and water resistance. Only similar to 3 mg of metal ions is needed to induce the wettability tran- sition in 1 g of kraft pulp, resulting in hydrophobic paper and tableware with water contact angles (WCAs) of 120-140 degrees. The coordinated Fe3+ and Zr4+ are stable, with negligible metal leaching during use, allowing the hydrophobic paper and tableware to be used for food packaging. This MIM technique can be integrated into the existing paper-making process for the scalable production of hydrophobic papers and tableware, providing an alternative route for developing sustainable and biodegradable plastic counterparts.
- Investigation of Viscoelastic Guided Wave Properties in Anisotropic Laminated Composites Using a Legendre Orthogonal Polynomials Expansion–Assisted Viscoelastodynamic ModelLiu, Hongye; Huang, Ziqi; Yin, Zhuang; Sun, Maoxun; Bo, Luyu; Li, Teng; Tian, Zhenhua (MDPI, 2024-06-10)This study investigates viscoelastic guided wave properties (e.g., complex–wavenumber–, phase–velocity–, and attenuation–frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency–dependent relations, a guided wave characteristic equation is formulated based on a Legendre orthogonal polynomials expansion (LOPE)–assisted viscoelastodynamic model, which fuses the hysteretic viscoelastic model–based wave dynamics and the LOPE–based mode shape approximation. Then, the complex–wavenumber–frequency solutions are obtained by solving the characteristic equation using an improved root–finding algorithm, which leverages coefficient matrix determinant ratios and our proposed local tracking windows. To trace the solutions on the dispersion curves of different wave modes and avoid curve–tracing misalignment in regions with phase–velocity curve crossing, we presented a curve–tracing strategy considering wave attenuation. With the LOPE–assisted viscoelastodynamic model, the effects of material viscosity and fiber orientation on different guided wave modes are investigated for unidirectional carbon–fiber–reinforced composites. The results show that the viscosity in the hysteresis model mainly affects the frequency–dependent attenuation of viscoelastic guided waves, while the fiber orientation influences both the phase–velocity and attenuation curves. We expect the theoretical work in this study to facilitate the development of guided wave–based techniques for the NDT and SHM of viscoelastic anisotropic laminated composites.
- An Investigation on Acoustic Metamaterial Physics to Inspire the Design of Novel Aircraft Engine LinersHubinger, Benjamin Evan (Virginia Tech, 2024-04-02)Attenuation of low frequency turbofan engine noise has been a challenging task in an industry that requires low weight and tightly-packed solutions. Without innovative advancements, the technology currently used will not be able to keep up with the increasingly stringent requirements on aircraft noise reduction. A need exists for novel technologies that will pave the way for the future of quiet aircraft. This thesis investigates acoustic metamaterials and their ability to achieve superior transmission loss characteristics not found in traditional honeycomb liners. The acoustic metamaterials investigated are an array of Helmholtz resonators with and without coupled cavities periodically-spaced along a duct wall. Analytical, numerical, and experimental developments of these acoustic metamaterial systems are used herein to study the effects of this technology on the transmission loss. Particularly focusing on analytical modeling will aid in understanding the underlying physics that governs their interesting transmission loss behavior. A deeper understanding of the physics will be used to aid in future acoustic metamaterial liner design. A parameter study is performed to understand the effects of the geometry, spacing, and number of resonators, as well as resonator cavity coupling on performance. Increased broadband transmission loss, particularly in low frequencies, is achieved through intelligent manipulation of these parameters. Acoustic metamaterials are shown to have appealing noise cancellation characteristics that prove to be effective for aircraft engine liner applications.
- Multi-functional Holographic Acoustic Lenses for Modulating Low- to High-Intensity Focused UltrasoundSallam, Ahmed (Virginia Tech, 2024-03-27)Focused ultrasound (FUS) is an emerging technology, and it plays an essential role in clinical and contactless acoustic energy transfer applications. These applications have critical criteria for the acoustic pressure level, the creation of complex pressure patterns, spatial management of the complicated acoustic field, and the degree of nonlinear waveform distortion at the focal areas, which have not been met to date. This dissertation focuses on introducing experimentally validated novel numerical approaches, optimization algorithms, and experimental techniques to fill existing knowledge gaps and enhance the functionality of holographic acoustic lenses (HALs) with an emphasis on applications related to biomedical-focused ultrasound and ultrasonic energy transfer. This dissertation also aims to investigate the dynamics of nonlinear acoustic beam shaping in engineered HALs. First, We will introduce 3D-printed metallic acoustic holographic mirrors for precise spatial manipulation of reflected ultrasonic waves. Optimization algorithms and experimental validations are presented for applications like contactless acoustic energy transfer. Furthermore, a portion of the present work focuses on designing holographic lenses in strongly heterogeneous media for ultrasound focusing and skull aberration compensation in transcranial-focused ultrasound. To this end, we collaborated with the Biomedical Engineering and Mechanics Department as well as Fralin Biomedical Research Institute to implement acoustic lenses in transcranial neuromodulation, targeting to improve the quality of life for patients with brain disease by minimizing the treatment time and optimizing the ultrasonic energy into the region of interest. We will also delve into the nonlinear regime for High-Intensity Focused Ultrasound (HIFU) applications, this study is structured under three objectives: (1) establishing nonlinear acoustic-elastodynamics models to represent the dynamics of holographic lenses under low- to high-intensity acoustic fields; (2) validating and leveraging the resulting models for high-fidelity lens designs used in generating specified nonlinear ultrasonic fields of complex spatial distribution; (3) exploiting new physical phenomena in acoustic holography. The performed research in this dissertation yields experimentally proven mathematical frameworks for extending the functionality of holographic lenses, especially in transcranial-focused ultrasound and nonlinear wavefront shaping, advancing knowledge in the burgeoning field of the inverse issue of nonlinear acoustics, which has remained underdeveloped for many years.
- A Multi-Sensor Passive Occupant LocalizationAmbarkutuk, Murat (Virginia Tech, 2024-11-25)Indoor localization has emerged as a critical technology for enhancing the functionality and efficiency of smart environments. This dissertation focuses on vibro-localization, a novel IOL methodology that determines occupant positions by analyzing floor vibrations caused by footfall patterns. Unlike traditional localization techniques that rely on visual or radio-based sensing, vibro-localization leverages accelerometers fixed to the floor to capture vibro-measurements, offering a cost-effective and privacy-preserving alternative. The primary objective of this research is to address significant limitations in existing vibro-localization approaches, including sensor imperfections, measurement uncertainty, and complex wave dynamics. To this end, we develop comprehensive models that characterize both random and systematic errors introduced by accelerometers, integrating these models into the localization framework to enhance accuracy. Furthermore, we quantify the uncertainty in vibro-measurements and elucidate their contribution to localization errors, providing a robust foundation for error mitigation strategies. A key contribution of this work is the introduction of an information-theoretic Byzantine Sensor Elimination (BSE) algorithm. This algorithm assesses the reliability of vibro-measurement vectors by categorizing sensors into consistent and divergent subsets, thereby minimizing the impact of external uncertainties such as reflections and dispersion. Additionally, we propose multi-sensor vibro-localization techniques that aggregate data from multiple accelerometers, enhancing robustness against individual sensor inaccuracies and environmental variabilities. To accurately model wave propagation, this dissertation advances parametric models that account for dispersion, attenuation, and material inhomogeneities in the floor structure. These models facilitate precise occupant localization even with low-spectral resolution in transfer function estimates. Empirical validation using controlled experimental data demonstrates significant improvements in localization accuracy and precision over baseline methods, highlighting the efficacy of the proposed techniques. The outcomes of this research contribute to the development of economically feasible and ethically sound IOL technologies, broadening their applicability across various domains such as smart homes, healthcare, and energy management. By addressing critical challenges in sensor reliability and wave dynamics, this dissertation paves the way for more accurate, reliable, and scalable indoor localization systems.
- Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulationLi, Teng; Li, Jiali; Bo, Luyu; Bachman, Hunter; Fan, Bei; Cheng, Jiangtao; Tian, Zhenhua (American Association for the Advancement of Science, 2024-05-24)Robotic manipulation of small objects has shown great potential for engineering, biology, and chemistry research. However, existing robotic platforms have difficulty in achieving contactless, high-resolution, 4-degrees- of- freedom (4-DOF) manipulation of small objects, and noninvasive maneuvering of objects in regions shielded by tissue and bone barriers. Here, we present chirality-tunable acoustic vortex tweezers that can tune acoustic vortex chirality, transmit through biological barriers, trap single micro-to millimeter-sized objects, and control object rotation. Assisted by programmable robots, our acoustic systems further enable contactless, high-resolution translation of single objects. Our systems were demonstrated by tuning acoustic vortex chirality, controlling object rotation, and translating objects along arbitrary-shaped paths. Moreover, we used our systems to trap single objects in regions with tissue and skull barriers and translate an object inside a Y-shaped channel of a thick biomimetic phantom. In addition, we showed the function of ultrasound imaging–assisted acoustic manipulation by monitoring acoustic object manipulation via live ultrasound imaging.
- Structure-Borne Vehicle Interior Noise Estimation Using Accelerometer Based Intelligent Tires in Passenger VehiclesAchanta, Yashasvi (Virginia Tech, 2023-06-22)With advancements in technology, electric vehicles are dominating the world making Internal Combustion engines less relevant, and hence vehicles are becoming quieter than ever before. But noise levels remain a significant concern for both passengers and automotive manufacturers. The vehicle's interior noise can affect the overall driving experience and even the safety of the driver and the passengers. The two main sources of vehicle interior noise are attributed to air-borne noises and structure-borne noises. A modern automobile is a complicated vibration system with several excitation sources like the engine, transmission system, tire/road interface excitation, and wind noise. With electric vehicles on the rise, the engine and transmission noise is practically eliminated, and effective preventive measures and control systems are already in place to reduce the aerodynamic-based noise, vibrations, and harshness (NVH) in modern automobiles making the structure-borne noise the most crucial of the noise sources. Tire/road interaction noise being the most dominant among the structure-borne noise is the main concern of the vehicle interior noise. The two main sources of vehicle interior noise induced by the tire pavement interaction noise are structure-borne noise induced by the low-frequency excitation and air-borne noises produced by the mid and high-frequency excitation. The present study tested an all-season tire over varying operational conditions such as different speeds, normal loads, and inflation pressures on an asphalt surface. Two tri-axial accelerometers attached 1800 apart from each other on the inner liner of the tire of a Volkswagen Jetta were used to measure the circumferential, lateral, and radial acceleration data. An Inertial Measurement Unit (IMU) and velocity box (VBOX) were instrumented in the vehicle to measure the acceleration at the center of gravity (COG) position of the vehicle and the longitudinal velocity of the vehicle respectively. The vehicle was also equipped with a modified hybrid of Close Proximity Testing (CPX) and On-Board Sound Intensity (OBSI) sound measurement systems which were designed and manufactured in-house to measure the tire/road interaction noise at the leading and trailing edges of the tire/road contact patch. Another microphone was instrumented inside the passenger compartment of the vehicle at the passenger's seat right ear position over the tire mounted with the sound measurement system to measure the vehicle interior noise as interpreted by the passengers in the vehicle. Two data acquisition systems coupled with a real-time Simulink model were used to collect all the measured data, one for the noise signals and the other for velocity and acceleration signals. The focus of the current study is to review different generation and amplification mechanisms of the structure-induced tire/road interaction noise and find the relevant dominant frequency ranges of the vehicle interior noise induced by the structure-borne noises using already established physics-based models and correlation techniques. It also aims to find correlations between tire acceleration, vehicle interior noise, and tire pavement interaction noise and their effect on different operational conditions like load, inflation pressure, and velocity. All the signals are studied in the time, frequency, and spectral domain and insights have been drawn on different tire/road noise generation and amplification mechanisms.