Browsing by Author "Tian, Zhiting"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Comprehensive Modeling of Novel Thermal Systems: Investigation of Cascaded Thermoelectrics and Bio-Inspired Thermal Protection Systems PerformanceKanimba, Eurydice (Virginia Tech, 2019-12-04)Thermal systems involve multiple components assembled to store or transfer heat for power, cooling, or insulation purpose, and this research focuses on modeling the performance of two novel thermal systems that are capable of functioning in environments subjected to high heat fluxes. The first investigated thermal system is a cascaded thermoelectric generator (TEG) that directly converts heat into electricity and offers a green option for renewable energy generation. The presented cascaded TEG allows harvesting energy in high temperatures ranging from 473K to 973K, and being a solid-state device with no moving parts constitutes an excellent feature for increase device life cycle and minimum maintenance in harsh, remote environments. Two cascaded TEG designs are analyzed in this research: the two-stage and three-stage cascaded TEGs, and based on the findings, the two-stage cascaded TEG produces a power output of 42 W with an efficiency of 8.3% while the three-cascaded TEG produces 51 W with an efficiency of 10.2%. The second investigated novel thermal system is a thermal protection system inspired by the porous internal skeleton of the cuttlefish also known as cuttlebone. The presented bio- inspired thermal protection has excellent features to serve as an integrated thermal protection system for spacecraft vehicles including being lightweight (93% porosity) and possessing high compressive strength. A large amount of heat flux is generated from friction between air and spacecraft vehicle exterior, especially during reentry into the atmosphere, and part of the herein presented research involves a thermomechanical modeling analysis of the cuttlebone bio-inspired integrated thermal protection system along with comparing its performance with three conventional structures such as the wavy, the pyramid, and cylindrical pin structures. The results suggest that the cuttlebone integrated thermal protection system excels the best at resisting deformation caused by thermal expansion when subjected to aerodynamic heat fluxes.
- Design and Optimization of a Self-powered Thermoelectric Car Seat CoolerCooke, Daniel Benjamin (Virginia Tech, 2018-05-22)It is well known that the seats in a parked vehicle become very hot and uncomfortable on warm days. A new self-powered thermoelectric car seat cooler is presented to solve this problem. This study details the design and optimization of such a device. The design relates to the high level layout of the major components and their relation to each other in typical operation. Optimization is achieved through the use of the ideal thermoelectric equations to determine the best compromise between power generation and cooling performance. This design is novel in that the same thermoelectric device is utilized for both power generation and for cooling. The first step is to construct a conceptual layout of the self-powered seat cooler. Using the ideal thermoelectric equations, an analytical model of the system is developed. The model is validated against experimental data and shows good correlation. Through a non-dimensional approach, the geometric sizing of the various components is optimized. With the optimal design found, the performance is evaluated using both the ideal equations and though use of the simulation software ANSYS. The final design consists of a flat absorber plate embedded into the car seat with a thermoelectric attached to the back. A finned heat sink is used to cool the thermoelectric. The device is shown to generate enough power to provide a reasonable temperature drop in the seat.
- Importance of the Hubbard correction on the thermal conductivity calculation of strongly correlated materials: a case study of ZnOConsiglio, Anthony; Tian, Zhiting (Springer Nature, 2016-11-10)The wide bandgap semiconductor, ZnO, has gained interest recently as a promising option for use in power electronics such as thermoelectric and piezoelectric generators, as well as optoelectronic devices. Though much work has been done to improve its electronic properties, relatively little is known of its thermal transport properties with large variations in measured thermal conductivity. In this study, we examine the effects of a Hubbard corrected energy functional on the lattice thermal conductivity of wurtzite ZnO calculated using density functional theory and an iterative solution to the Boltzmann transport equation. Showing good agreement with existing experimental measurements, and with a detailed analysis of the mode-dependence and phonon properties, the results from this study highlight the importance of the Hubbard correction in calculations of thermal transport properties of materials with strongly correlated electron systems.
- Nano-Confined Room-Temperature Ionic Liquids for Electrochemical ApplicationsHe, Yadong (Virginia Tech, 2018-02-28)Room-temperature ionic liquids (RTILs) and their derivatives are promising electrolytes for electrochemical devices including supercapacitors. Understanding the behavior of RTILs in these devices is critical for improving their performance. The energy density of supercapacitors can be improved greatly by using RTILs as electrolytes and nanoporous carbon as electrodes, but the mechanism of the charge storage using these materials is not well understood. In this dissertation, the diffusion and charging dynamics of RTILs in nanopores are studied. The results show that ion packing typically plays the most important role in ion diffusion. The study also demonstrates that the cyclic charging and discharging of a pore can exhibit a number of interesting features (e.g., sloshing of ionic charge along the pores during cyclic scans), which help explain experimental observations such as the negligible contribution of co-ions to charge storage at high scan rates. Solid electrolytes with both high ionic conductivities and excellent mechanical strength are needed in many electrochemical devices. The invention of ion gels featuring aligned polyanions immersed inside RTILs has shown promise in meeting this demand, but the mechanism behind their superior mechanical strength remains elusive. Using molecular simulations, it is discovered that the high elastic moduli of model PBDT ion gels originate from the RTIL-mediated interactions between the polyanions. This insight is useful for future design of ion gels to improve their transport and mechanical properties.
- Nanoscale Thermal Transport at Graphene-Soft Material InterfacesLiu, Ying (Virginia Tech, 2016-07-05)Nanocomposites consist of graphene dispersed in matrices of soft materials are promising thermal management materials. A fundamental understanding of the thermal transport at graphene-soft material interfaces is essential for developing these nanocomposites. In this dissertation, thermal transport at graphene-octane interfaces was investigated using molecular dynamics simulations, and the results revealed several important characteristics of such thermal transport. The interfacial thermal conductance of graphene-octane interfaces were studied first. It was found that the interfacial thermal conductance exhibits a distinct duality: if heat enters graphene from one side of its basal plane and leaves it through the other side, the corresponding interfacial thermal conductance, Gacross, is large; if heat enters graphene from both sides of its basal plane and leaves it at a position far away on its basal plane, the corresponding interfacial thermal conductance, Gnon-across, is small. Gacross is ~30 times larger than Gnon-across for a single-layer graphene immersed in liquid octane. Additional analysis showed that this duality originates partially from the strong, positive correlations between the heat fluxes at the two surfaces of a graphene layer. The interfacial thermal conductance of the graphene-soft material interfaces in presence of defects in the graphene was then studied. The results showed that the heat transfer at the interfaces is enhanced by defects. Estimations based on effective medium theories showed that the effective thermal conductivity of the graphene-based composites could even be enhanced with defects in graphene when heat transfer at the graphene-soft material interface is the bottleneck for the thermal transport in these composites. To describe the interfacial thermal transport at graphene interfaces uniformly, a nonlocal constitutive model was proposed and validated to replace the classical Kapitza model. By characterizing the thermal transport properties of graphene interfaces using a pair of thermal conductance, the model affords a uniform description of the thermal transport at graphene interfaces for different thermal transport modes. Using this model, the data interpretation in time domain thermalreflectance (TDTR) measurements was investigated, and the results showed that the interfacial thermal conductance measured in typical TDTR tests is that of the across mode for thin-layered materials.
- Numerical Analysis of Airflow and Output of Solar Chimney Power PlantsStockinger, Christopher Allen (Virginia Tech, 2016-06-29)Computational fluid dynamics was used to simulate solar chimney power plants and investigate modeling techniques and expected energy output from the system. The solar chimney consists of three primary parts: a collector made of a transparent material such as glass, a tower made of concrete located at the center of the collector, and a turbine that is typically placed at the bottom of the tower. The collector absorbs solar radiation and heats the air below, whereby air flows inward towards the tower. As air exits at the top of the tower, more air is drawn below the collector repeating the process. The turbine converts pressure within the flow into power. The study investigated three validation cases to numerically model the system properly. Modeling the turbine as a pressure drop allows for the turbine power output to be calculated while not physically modeling the turbine. The numerical model was used to investigate air properties, such as velocity, temperature, and pressure. The results supported the claim that increasing the energy into the system increased both the velocities and temperatures. Also, increasing the turbine pressure drop decreases the velocities and increases the temperatures within the system. In addition to the numerical model, analytical models representing the vertical velocity without the turbine and the maximum power output from a specific chimney were used to investigate the effects on the flow when varying the geometry. Increasing the height of the tower increased the vertical velocity and power output, and increasing the diameter increased the power output. Dimensionless variables were used in a regression analysis to develop a predictive equation for power output. The predictive equation was tested with new simulations and was shown to be in very good agreement.
- Process and Material Modifications to Enable New Material for Material Extrusion Additive ManufacturingZawaski, Callie Elizabeth (Virginia Tech, 2020-07-08)The overall goal of this work is to expand the materials library for the fused filament fabrication (FFF) material extrusion additive manufacturing (AM) process through innovations in the FFF process, post-process, and polymer composition. This research was conducted at two opposing ends of the FFF-processing temperature: low processing temperature (<100 °C) for pharmaceutical applications and high processing temperatures (>300 °C) for high-performance structural polymer applications. Both applications lie outside the typical range for FFF (190-260 °C). To achieve these goals, both the material and process were modified. Due to the low processing temperature requirements for pharmaceutical active ingredients, a water-soluble, low melting temperature material (sulfonated poly(ethylene glycol)) series was used to explore how different counterions affect FFF processing. The strong ionic interaction within poly(PEG8k-co-CaSIP) resulted in the best print quality due to the higher viscosity (105 Pa∙s) allowing the material to hold shape in the melt and the high-nucleation producing small spherulites mitigating the layer warping. Fillers were then explored to observe if an ionic filler would produce a similar effect. The ionic filler (calcium chloride) in poly(PEG8k-co-NaSIP) altered the crystallization kinetics, by increasing the nucleation density and viscosity, resulting in improved printability of the semi-crystalline polymer. A methodology for embedding liquids and powders into thin-walled capsules was developed for the incorporation of low-temperature active ingredients into water-soluble materials that uses a higher processing temperature than the actives are compatible with. By tuning the thickness of the printed walls, the time of internal liquid release was controlled during dissolution. This technique was used to enable the release of multiple liquids and powders at different times during dissolution. To enable the printing of high-temperature, high-performance polymers, an inverted desktop-scale heated chamber with the capability of reaching over 300 °C was developed for FFF. The design was integrated onto a FFF machine and was used to successfully print polyphenylsulfone which resulted in a 48% increase in tensile strength (at 200 °C) when compared to printing at room temperature. Finally, the effects of thermal processing conditions for printing ULTEM® 1010 were studied by independently varying the i) nozzle temperature, ii) environment temperature, and iii) post-processing conditions. The nozzle temperature primarily enables flow through the nozzle and needs to be set to at least 360 °C to prevent under extrusion. The environment temperature limits the part warping, as it approaches Tg (217 °C), and improves the layer bonding by decreasing the rate of cooling that allows more time for polymer chain entanglement. Post-processing for a longer time above Tg (18 hrs at 260 °C) promotes further entanglement, which increases the part strength (50% increase in yield strength); however, the part is susceptible to deformation. A post-processing technique was developed to preserve the parts' shape by packing solid parts into powdered salt.
- A Thermal Switch from Thermoresponsive Polymer Aqueous SolutionsMa, Yunwei (Virginia Tech, 2018-11-29)Thermal switch is very important in today’s world and it has varies of applications including heat dissipation and engine efficiency improving. The commercial thermal switch based on mechanical design is very slow and the structure is too complicated to make them smaller. To enable fast thermal switch as well as to make thermal switch more compact, I try to use second-order phase transition material to enable our thermal switch. Noticing the transition properties of thermoresponsive polymer for drug delivery, its potential in thermal switch can be expected. I used Poly(N-isopropylacrylamide) (PNIPAM) as an example to show the abrupt thermal conductivity change of thermoresponsive polymer solutions below and above their phase transition temperature. A novel technique, transition grating method, is used to measure the thermal conductivity. The ratio of thermal switch up to 1.15 in transparent PNIPAM solutions after the transition is observed. This work will demonstrate the new design of using second-order phase transition material to enable fast and efficient thermal switch.