Design and Optimization of a Self-powered Thermoelectric Car Seat Cooler

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

It is well known that the seats in a parked vehicle become very hot and uncomfortable on warm days. A new self-powered thermoelectric car seat cooler is presented to solve this problem. This study details the design and optimization of such a device. The design relates to the high level layout of the major components and their relation to each other in typical operation. Optimization is achieved through the use of the ideal thermoelectric equations to determine the best compromise between power generation and cooling performance. This design is novel in that the same thermoelectric device is utilized for both power generation and for cooling. The first step is to construct a conceptual layout of the self-powered seat cooler. Using the ideal thermoelectric equations, an analytical model of the system is developed. The model is validated against experimental data and shows good correlation. Through a non-dimensional approach, the geometric sizing of the various components is optimized. With the optimal design found, the performance is evaluated using both the ideal equations and though use of the simulation software ANSYS. The final design consists of a flat absorber plate embedded into the car seat with a thermoelectric attached to the back. A finned heat sink is used to cool the thermoelectric. The device is shown to generate enough power to provide a reasonable temperature drop in the seat.

Non-dimensional Equations, Solar Thermoelectric Generator, Thermoelectric Cooler