Browsing by Author "Tsui, Kwok-Leung"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- Assessing elderly’s functional balance and mobility via analyzing data from waist-mounted tri-axial wearable accelerometers in timed up and go testsYu, Lisha; Zhao, Yang; Wang, Hailiang; Sun, Tien-Lung; Murphy, Terrence E.; Tsui, Kwok-Leung (2021-03-25)Background Poor balance has been cited as one of the key causal factors of falls. Timely detection of balance impairment can help identify the elderly prone to falls and also trigger early interventions to prevent them. The goal of this study was to develop a surrogate approach for assessing elderly’s functional balance based on Short Form Berg Balance Scale (SFBBS) score. Methods Data were collected from a waist-mounted tri-axial accelerometer while participants performed a timed up and go test. Clinically relevant variables were extracted from the segmented accelerometer signals for fitting SFBBS predictive models. Regularized regression together with random-shuffle-split cross-validation was used to facilitate the development of the predictive models for automatic balance estimation. Results Eighty-five community-dwelling older adults (72.12 ± 6.99 year) participated in our study. Our results demonstrated that combined clinical and sensor-based variables, together with regularized regression and cross-validation, achieved moderate-high predictive accuracy of SFBBS scores (mean MAE = 2.01 and mean RMSE = 2.55). Step length, gender, gait speed and linear acceleration variables describe the motor coordination were identified as significantly contributed variables of balance estimation. The predictive model also showed moderate-high discriminations in classifying the risk levels in the performance of three balance assessment motions in terms of AUC values of 0.72, 0.79 and 0.76 respectively. Conclusions The study presented a feasible option for quantitatively accurate, objectively measured, and unobtrusively collected functional balance assessment at the point-of-care or home environment. It also provided clinicians and elderly with stable and sensitive biomarkers for long-term monitoring of functional balance.
- Automatic Recognition and Analysis of Balance Activity in Community-Dwelling Older Adults: Algorithm ValidationHsu, Yu-Cheng; Wang, Hailiang; Zhao, Yang; Chen, Frank; Tsui, Kwok-Leung (JMIR Publications, 2021-12-20)Background: Clinical mobility and balance assessments identify older adults who have a high risk of falls in clinics. In the past two decades, sensors have been a popular supplement to mobility and balance assessment to provide quantitative information and a cost-effective solution in the community environment. Nonetheless, the current sensor-based balance assessment relies on manual observation or motion-specific features to identify motions of research interest. Objective: The objective of this study was to develop an automatic motion data analytics framework using signal data collected from an inertial sensor for balance activity analysis in community-dwelling older adults. Methods: In total, 59 community-dwelling older adults (19 males and 40 females; mean age = 81.86 years, SD 6.95 years) were recruited in this study. Data were collected using a body-worn inertial measurement unit (including an accelerometer and a gyroscope) at the L4 vertebra of each individual. After data preprocessing and motion detection via a convolutional long short-term memory (LSTM) neural network, a one-class support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighborhood (k-NN) were adopted to classify high-risk individuals. Results: The framework developed in this study yielded mean accuracies of 87%, 86%, and 89% in detecting sit-to-stand, turning 360 degrees, and stand-to-sit motions, respectively. The balance assessment classification showed accuracies of 90%, 92%, and 86% in classifying abnormal sit-to-stand, turning 360 degrees, and stand-to-sit motions, respectively, using Tinetti Performance Oriented Mobility Assessment-Balance (POMA-B) criteria by the one-class SVM and k-NN. Conclusions: The sensor-based approach presented in this study provided a time-effective manner with less human efforts to identify and preprocess the inertial signal and thus enabled an efficient balance assessment tool for medical professionals. In the long run, the approach may offer a flexible solution to relieve the community's burden of continuous health monitoring.
- A Clustering Refinement Approach for Revealing Urban Spatial Structure from Smart Card DataTang, Liyang; Zhao, Yang; Tsui, Kwok-Leung; He, Yuxin; Pan, Liwei (MDPI, 2020-08-13)Facilitated by rapid development of the data-intensive techniques together with communication and sensing technology, we can take advantage of smart card data collected through Automatic Fare Collection (AFC) systems to establish connections between public transit and urban spatial structure. In this paper, with a case study on Shenzhen metro system in China, we investigate the agglomeration pattern of passenger flow among subway stations. Specifically, leveraging inbound and outbound passenger flows at subway stations, we propose a clustering refinement approach based on cluster member stability among multiple clusterings produced by isomorphic or heterogeneous clusterers. Furthermore, we validate and elaborate five clusters of subway stations in terms of regional functionality and urban planning by comparing station clusters with reference to government planning policies and regulations of Shenzhen city. Additionally, outlier stations with ambiguous functionalities are detected using proposed clustering refinement framework.
- Design of a Sensor-Technology-Augmented Gait and Balance Monitoring System for Community-Dwelling Older Adults in Hong Kong: A Pilot Feasibility StudyZhao, Yang; Yu, Lisha; Fan, Xiaomao; Pang, Marco Y. C.; Tsui, Kwok-Leung; Wang, Hailiang (MDPI, 2023-09-21)Routine assessments of gait and balance have been recognized as an effective approach for preventing falls by issuing early warnings and implementing appropriate interventions. However, current limited public healthcare resources cannot meet the demand for continuous monitoring of deteriorations in gait and balance. The objective of this study was to develop and evaluate the feasibility of a prototype surrogate system driven by sensor technology and multi-sourced heterogeneous data analytics, for gait and balance assessment and monitoring. The system was designed to analyze users’ multi-mode data streams collected via inertial sensors and a depth camera while performing a 3-m timed up and go test, a five-times-sit-to-stand test, and a Romberg test, for predicting scores on clinical measurements by physiotherapists. Generalized regression of sensor data was conducted to build prediction models for gait and balance estimations. Demographic correlations with user acceptance behaviors were analyzed using ordinal logistic regression. Forty-four older adults (38 females) were recruited in this pilot study (mean age = 78.5 years, standard deviation [SD] = 6.2 years). The participants perceived that using the system for their gait and balance monitoring was a good idea (mean = 5.45, SD = 0.76) and easy (mean = 4.95, SD = 1.09), and that the system is useful in improving their health (mean = 5.32, SD = 0.83), is trustworthy (mean = 5.04, SD = 0.88), and has a good fit between task and technology (mean = 4.97, SD = 0.84). In general, the participants showed a positive intention to use the proposed system in their gait and balance management (mean = 5.22, SD = 1.10). Demographic correlations with user acceptance are discussed. This study provides preliminary evidence supporting the feasibility of using a sensor-technology-augmented system to manage the gait and balance of community-dwelling older adults. The intervention is validated as being acceptable, viable, and valuable.
- Identifying sensors-based parameters associated with fall risk in community-dwelling older adults: an investigation and interpretation of discriminatory parametersWang, Xuan; Cao, Junjie; Zhao, Qizheng; Chen, Manting; Luo, Jiajia; Wang, Hailiang; Yu, Lisha; Tsui, Kwok-Leung; Zhao, Yang (2024-02-01)Background: Falls pose a severe threat to the health of older adults worldwide. Determining gait and kinematic parameters that are related to an increased risk of falls is essential for developing effective intervention and fall prevention strategies. This study aimed to investigate the discriminatory parameter, which lay an important basis for developing effective clinical screening tools for identifying high-fall-risk older adults. Methods: Forty-one individuals aged 65 years and above living in the community participated in this study. The older adults were classified as high-fall-risk and low-fall-risk individuals based on their BBS scores. The participants wore an inertial measurement unit (IMU) while conducting the Timed Up and Go (TUG) test. Simultaneously, a depth camera acquired images of the participants’ movements during the experiment. After segmenting the data according to subtasks, 142 parameters were extracted from the sensor-based data. A t-test or Mann-Whitney U test was performed on the parameters for distinguishing older adults at high risk of falling. The logistic regression was used to further quantify the role of different parameters in identifying high-fall-risk individuals. Furthermore, we conducted an ablation experiment to explore the complementary information offered by the two sensors. Results: Fifteen participants were defined as high-fall-risk individuals, while twenty-six were defined as low-fall-risk individuals. 17 parameters were tested for significance with p-values less than 0.05. Some of these parameters, such as the usage of walking assistance, maximum angular velocity around the yaw axis during turn-to-sit, and step length, exhibit the greatest discriminatory abilities in identifying high-fall-risk individuals. Additionally, combining features from both devices for fall risk assessment resulted in a higher AUC of 0.882 compared to using each device separately. Conclusions: Utilizing different types of sensors can offer more comprehensive information. Interpreting parameters to physiology provides deeper insights into the identification of high-fall-risk individuals. High-fall-risk individuals typically exhibited a cautious gait, such as larger step width and shorter step length during walking. Besides, we identified some abnormal gait patterns of high-fall-risk individuals compared to low-fall-risk individuals, such as less knee flexion and a tendency to tilt the pelvis forward during turning.
- Impact of early phase COVID-19 precautionary behaviors on seasonal influenza in Hong Kong: A time-series modeling approachLin, Chun-Pang; Dorigatti, Ilaria; Tsui, Kwok-Leung; Xie, Min; Ling, Man-Ho; Yuan, Hsiang-Yu (Frontiers, 2022-11)BackgroundBefore major non-pharmaceutical interventions were implemented, seasonal incidence of influenza in Hong Kong showed a rapid and unexpected reduction immediately following the early spread of COVID-19 in mainland China in January 2020. This decline was presumably associated with precautionary behavioral changes (e.g., wearing face masks and avoiding crowded places). Knowing their effectiveness on the transmissibility of seasonal influenza can inform future influenza prevention strategies. MethodsWe estimated the effective reproduction number (R-t) of seasonal influenza in 2019/20 winter using a time-series susceptible-infectious-recovered (TS-SIR) model with a Bayesian inference by integrated nested Laplace approximation (INLA). After taking account of changes in underreporting and herd immunity, the individual effects of the behavioral changes were quantified. FindingsThe model-estimated mean R-t reduced from 1.29 (95%CI, 1.27-1.32) to 0.73 (95%CI, 0.73-0.74) after the COVID-19 community spread began. Wearing face masks protected 17.4% of people (95%CI, 16.3-18.3%) from infections, having about half of the effect as avoiding crowded places (44.1%, 95%CI, 43.5-44.7%). Within the current model, if more than 85% of people had adopted both behaviors, the initial R-t could have been less than 1. ConclusionOur model results indicate that wearing face masks and avoiding crowded places could have potentially significant suppressive impacts on influenza.
- In-Depth Insights into the Application of Recurrent Neural Networks (RNNs) in Traffic Prediction: A Comprehensive ReviewHe, Yuxin; Huang, Ping; Hong, Weihang; Luo, Qin; Li, Lishuai; Tsui, Kwok-Leung (MDPI, 2024-09-06)Traffic prediction is crucial for transportation management and user convenience. With the rapid development of deep learning techniques, numerous models have emerged for traffic prediction. Recurrent Neural Networks (RNNs) are extensively utilized as representative predictive models in this domain. This paper comprehensively reviews RNN applications in traffic prediction, focusing on their significance and challenges. The review begins by discussing the evolution of traffic prediction methods and summarizing state-of-the-art techniques. It then delves into the unique characteristics of traffic data, outlines common forms of input representations in traffic prediction, and generalizes an abstract description of traffic prediction problems. Then, the paper systematically categorizes models based on RNN structures designed for traffic prediction. Moreover, it provides a comprehensive overview of seven sub-categories of applications of deep learning models based on RNN in traffic prediction. Finally, the review compares RNNs with other state-of-the-art methods and highlights the challenges RNNs face in traffic prediction. This review is expected to offer significant reference value for comprehensively understanding the various applications of RNNs and common state-of-the-art models in traffic prediction. By discussing the strengths and weaknesses of these models and proposing strategies to address the challenges faced by RNNs, it aims to provide scholars with insights for designing better traffic prediction models.
- An indoor fall monitoring system: Robust, multistatic radar sensing and explainable, feature-resonated deep neural networkShen, Menqi; Tsui, Kwok-Leung; Nussbaum, Maury A.; Kim, Sunwook; Lure, Fleming (IEEE, 2023-04)Indoor fall monitoring is challenging for community-dwelling older adults due to the need for high accuracy and privacy concerns. Doppler radar is promising, given its low cost and contactless sensing mechanism. However, the line-of-sight restriction limits the application of radar sensing in practice, as the Doppler signature will vary when the sensing angle changes, and signal strength will be substantially degraded with large aspect angles. Additionally, the similarity of the Doppler signatures among different fall types makes it extremely challenging for classification. To address these problems, in this paper we first present a comprehensive experimental study to obtain Doppler radar signals under large and arbitrary aspect angles for diverse types of simulated falls and daily living activities. We then develop a novel, explainable, multi-stream, feature-resonated neural network (eMSFRNet) that achieves fall detection and a pioneering study of classifying seven fall types. eMSFRNet is robust to both radar sensing angles and subjects. It is also the first method that can resonate and enhance feature information from noisy/weak Doppler signatures. The multiple feature extractors - including partial pre-trained layers from ResNet, DenseNet, and VGGNet - extracts diverse feature information with various spatial abstractions from a pair of Doppler signals. The feature-resonated-fusion design translates the multi-stream features to a single salient feature that is critical to fall detection and classification. eMSFRNet achieved 99.3% accuracy detecting falls and 76.8% accuracy for classifying seven fall types. Our work is the first effective multistatic robust sensing system that overcomes the challenges associated with Doppler signatures under large and arbitrary aspect angles, via our comprehensible feature-resonated deep neural network. Our work also demonstrates the potential to accommodate different radar monitoring tasks that demand precise and robust sensing.
- Influencing factors of Barthel index scores among the community-dwelling elderly in Hong Kong: a random intercept modelPan, Hao; Zhao, Yang; Wang, Hailiang; Li, Xinyue; Leung, Eman; Chen, Frank; Cabrera, Javier; Tsui, Kwok-Leung (2021-09-06)Background Barthel Index (BI) is one of the most widely utilized tools for assessing functional independence in activities of daily living. Most existing BI studies used populations with specific diseases (e.g., Alzheimer’s and stroke) to test prognostic factors of BI scores; however, the generalization of these findings was limited when the target populations varied. Objectives The aim of the present study was to utilize electronic health records (EHRs) and data mining techniques to develop a generic procedure for identifying prognostic factors that influence BI score changes among community-dwelling elderly. Methods Longitudinal data were collected from 113 older adults (81 females; mean age = 84 years, SD = 6.9 years) in Hong Kong elderly care centers. Visualization technologies were used to align annual BI scores with individual EHRs chronologically. Linear mixed-effects (LME) regression was conducted to model longitudinal BI scores based on socio-demographics, disease conditions, and features extracted from EHRs. Results The visualization presented a decline in BI scores changed by time and health history events. The LME model yielded a conditional R2 of 84%, a marginal R2 of 75%, and a Cohen’s f2 of 0.68 in the design of random intercepts for individual heterogeneity. Changes in BI scores were significantly influenced by a set of socio-demographics (i.e., sex, education, living arrangement, and hobbies), disease conditions (i.e., dementia and diabetes mellitus), and EHRs features (i.e., event counts in allergies, diagnoses, accidents, wounds, hospital admissions, injections, etc.). Conclusions The proposed visualization approach and the LME model estimation can help to trace older adults’ BI score changes and identify the influencing factors. The constructed long-term surveillance system provides reference data in clinical practice and help healthcare providers manage the time, cost, data and human resources in community-dwelling settings.
- A New Robust Multivariate EWMA Dispersion Control Chart for Individual ObservationsAjadi, Jimoh Olawale; Zwetsloot, Inez Maria; Tsui, Kwok-Leung (MDPI, 2021-05-03)A multivariate control chart is proposed to detect changes in the process dispersion of multiple correlated quality characteristics. We focus on individual observations, where we monitor the data vector-by-vector rather than in (rational) subgroups. The proposed control chart is developed by applying the logarithm to the diagonal elements of the estimated covariance matrix. Then, this vector is incorporated in an exponentially weighted moving average (EWMA) statistic. This design makes the chart robust to non-normality in the underlying data. We compare the performance of the proposed control chart with popular alternatives. The simulation studies show that the proposed control chart outperforms the existing procedures when there is an overall decrease in the covariance matrix. In addition, the proposed chart is the most robust to changes in the data distribution, where we focus on small deviations which are difficult to detect. Finally, the compared control charts are applied to two case studies.
- Prediction of Wellness Condition for Community-Dwelling Elderly via ECG Signals Data-Based Feature Construction and ModelingZhao, Yang; Xu, Fan; Fan, Xiaomao; Wang, Hailiang; Tsui, Kwok-Leung; Guan, Yurong (MDPI, 2022-09-05)The accelerated growth of elderly populations in many countries and regions worldwide is creating a major burden to the healthcare system. Intelligent approaches for continuous health monitoring have the potential to promote the transition to more proactive and affordable healthcare. Electrocardiograms (ECGs), collected from portable devices, with noninvasive and cost-effective merits, have been widely used to monitor various health conditions. However, the dynamic and heterogeneous pattern of ECG signals makes relevant feature construction and predictive model development a challenging task. In this study, we aim to develop an integrated approach for one-day-forward wellness prediction in the community-dwelling elderly using single-lead short ECG signal data via multiple-features construction and predictive model implementation. Vital signs data from the elderly were collected via station-based equipment on a daily basis. After data preprocessing, a set of features were constructed from ECG signals based on the integration of various models, including time and frequency domain analysis, a wavelet transform-based model, ensemble empirical mode decomposition (EEMD), and the refined composite multiscale sample entropy (RCMSE) model. Then, a machine learning based predictive model was established to map the l-day lagged features to wellness condition. The results showed that the approach developed in this study achieved the best performance for wellness prediction in the community-dwelling elderly. In practice, the proposed approach could be useful in the timely identification of elderly people who might have health risks, and could facilitating decision-making to take appropriate interventions.
- Review on Lithium-ion Battery PHM from the Perspective of Key PHM StepsKong, Jinzhen; Liu, Jie; Zhu, Jingzhe; Zhang, Xi; Tsui, Kwok-Leung; Peng, Zhike; Wang, Dong (2024-07-22)Prognostics and health management (PHM) has gotten considerable attention in the background of Industry 4.0. Battery PHM contributes to the reliable and safe operation of electric devices. Nevertheless, relevant reviews are still continuously updated over time. In this paper, we browsed extensive literature related to battery PHM from 2018 to 2023 and summarized advances in battery PHM field, including battery testing and public datasets, fault diagnosis and prediction methods, health status estimation and health management methods. The last topic includes state of health estimation methods, remaining useful life prediction methods and predictive maintenance methods. Each of these categories is introduced and discussed in details. Based on this survey, we accordingly discuss challenges left to battery PHM, and provide future research opportunities. This research systematically reviews recent research about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers and practitioners.
- A Systematic Review of Wearable Sensor-Based Technologies for Fall Risk Assessment in Older AdultsChen, Manting; Wang, Hailiang; Yu, Lisha; Yeung, Eric Hiu Kwong; Luo, Jiajia; Tsui, Kwok-Leung; Zhao, Yang (MDPI, 2022-09-07)Falls have been recognized as the major cause of accidental death and injury in people aged 65 and above. The timely prediction of fall risks can help identify older adults prone to falls and implement preventive interventions. Recent advancements in wearable sensor-based technologies and big data analysis have spurred the development of accurate, affordable, and easy-to-use approaches to fall risk assessment. The objective of this study was to systematically assess the current state of wearable sensor-based technologies for fall risk assessment among community-dwelling older adults. Twenty-five of 614 identified research articles were included in this review. A comprehensive comparison was conducted to evaluate these approaches from several perspectives. In general, these approaches provide an accurate and effective surrogate for fall risk assessment. The accuracy of fall risk prediction can be influenced by various factors such as sensor location, sensor type, features utilized, and data processing and modeling techniques. Features constructed from the raw signals are essential for predictive model development. However, more investigations are needed to identify distinct, clinically interpretable features and develop a general framework for fall risk assessment based on the integration of sensor technologies and data modeling.