Design of a Sensor-Technology-Augmented Gait and Balance Monitoring System for Community-Dwelling Older Adults in Hong Kong: A Pilot Feasibility Study
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Routine assessments of gait and balance have been recognized as an effective approach for preventing falls by issuing early warnings and implementing appropriate interventions. However, current limited public healthcare resources cannot meet the demand for continuous monitoring of deteriorations in gait and balance. The objective of this study was to develop and evaluate the feasibility of a prototype surrogate system driven by sensor technology and multi-sourced heterogeneous data analytics, for gait and balance assessment and monitoring. The system was designed to analyze users’ multi-mode data streams collected via inertial sensors and a depth camera while performing a 3-m timed up and go test, a five-times-sit-to-stand test, and a Romberg test, for predicting scores on clinical measurements by physiotherapists. Generalized regression of sensor data was conducted to build prediction models for gait and balance estimations. Demographic correlations with user acceptance behaviors were analyzed using ordinal logistic regression. Forty-four older adults (38 females) were recruited in this pilot study (mean age = 78.5 years, standard deviation [SD] = 6.2 years). The participants perceived that using the system for their gait and balance monitoring was a good idea (mean = 5.45, SD = 0.76) and easy (mean = 4.95, SD = 1.09), and that the system is useful in improving their health (mean = 5.32, SD = 0.83), is trustworthy (mean = 5.04, SD = 0.88), and has a good fit between task and technology (mean = 4.97, SD = 0.84). In general, the participants showed a positive intention to use the proposed system in their gait and balance management (mean = 5.22, SD = 1.10). Demographic correlations with user acceptance are discussed. This study provides preliminary evidence supporting the feasibility of using a sensor-technology-augmented system to manage the gait and balance of community-dwelling older adults. The intervention is validated as being acceptable, viable, and valuable.