Browsing by Author "Wang, Han"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- 1 kV Self-Aligned Vertical GaN Superjunction DiodeMa, Yunwei; Porter, Matthew; Qin, Yuan; Spencer, Joseph; Du, Zhonghao; Xiao, Ming; Wang, Yifan; Kravchenko, Ivan; Briggs, Dayrl P.; Hensley, Dale K.; Udrea, Florin; Tadjer, Marko; Wang, Han; Zhang, Yuhao (IEEE, 2024-01)This work demonstrates vertical GaN superjunction (SJ) diodes fabricated via a novel self-aligned process. The SJ comprises n-GaN pillars wrapped by the charge-balanced p-type nickel oxide (NiO). After the NiO sputtering around GaN pillars, the self-aligned process exposes the top pillar surfaces without the need for additional lithography or a patterned NiO etching which is usually difficult. The GaN SJ diode shows a breakdown voltage (B V) of 1100 V, a specific on-resistance ( RON) of 0.4 mΩ⋅ cm2, and a SJ drift-region resistance ( Rdr) of 0.13 mΩ⋅ cm2. The device also exhibits good thermal stability with B V retained over 1 kV and RON dropped to 0.3 mΩ⋅ cm2 at 125oC . The trade-off between B V and Rdr is superior to the 1D GaN limit. These results show the promise of vertical GaN SJ power devices. The self-aligned process is applicable for fabricating the heterogeneous SJ based on various wide- and ultra-wide bandgap semiconductors.
- 10-kV Ga2O3 Charge-Balance Schottky Rectifier Operational at 200 ◦CQin, Yuan; Xiao, Ming; Porter, Matthew; Ma, Yunwei; Spencer, Joseph; Du, Zhonghao; Jacobs, Alan G.; Sasaki, Kohei; Wang, Han; Tadjer, Marko; Zhang, Yuhao (IEEE, 2023-08)This work demonstrates a lateral Ga2O3 Schottky barrier diode (SBD) with a breakdown voltage (BV) over 10 kV, the highest BV reported in Ga2O3 devices to date. The 10 kV SBD shows good thermal stability up to 200◦C, which is among the highest operational temperatures reported in multi-kilovolt Ga2O3 devices. The key device design for achieving such high BV is a reduced surface field (RESURF) structure based on the p-type nickel oxide (NiO), which balances the depletion charges in the n-Ga2O3 channel at high voltage. At BV, the chargebalanced Ga2O3 SBD shows an average lateral electric field (E-field) over 4.7 MV/cm at 25 ◦C and over 3.5 MV/cm at 200◦C, both of which exceed the critical E-field of GaN and SiC. The 10 kV SBD shows a specific on-resistance of 0.27 ·cm2 and a turn-on voltage of 1 V; at 200◦C, the former doubles and the latter reduces to 0.7 V. These results suggest the good potential of Ga2O3 devices for mediumand high-voltage, high-temperature power applications.
- 2 kV, 0.7 mΩ·cm2 Vertical Ga2O3 Superjunction Schottky Rectifier with Dynamic RobustnessQin, Yuan; Porter, Matthew; Xiao, Ming; Du, Zhonghao; Zhang, Hongming; Ma, Yunwei; Spencer, Joseph; Wang, Boyan; Song, Qihao; Sasaki, Kohei; Lin, Chia-Hung; Kravchenko, Ivan; Briggs, Dayrl P.; Hensley, Dale K.; Tadjer, Marko; Wang, Han; Zhang, Yuhao (IEEE, 2023)We report the first experimental demonstration of a vertical superjunction device in ultra-wide bandgap (UWBG) Ga2O3. The device features 1.8 μm wide, 2×1017 cm-3 doped n-Ga2O3 pillars wrapped by the charge-balanced p-type nickel oxide (NiO). The sidewall NiO is sputtered through a novel self-align process. Benefitted from the high doping in Ga2O3, the superjunction Schottky barrier diode (SJ-SBD) achieves a ultra-low specific on-resistance (RON,SP) of 0.7 mΩ·cm2 with a low turn-on voltage of 1 V and high breakdown voltage (BV) of 2000 V. The RON,SP~BV trade-off is among the best in all WBG and UWBG power SBDs. The device also shows good thermal stability with BV > 1.8 kV at 175 oC. In the unclamped inductive switching tests, the device shows a dynamic BV of 2.2 kV and no degradation under 1.7 kV repetitive switching, verifying the fast acceptor depletion in NiO under dynamic switching. Such high-temperature and switching robustness are reported for the first time in a heterogeneous superjunction. These results show the great potential of UWBG superjunction power devices.
- 5th International Symposium on Focused UltrasoundAbounader, Roger; Abraham, Christopher; Adema, Gosse; Agrawal, Punit; Airan, Raag; Aleman, Dionne; Alexander, Phillip; Alkins, Ryan; Alnazeer, Moez; Altman, Michael; Aly, Amirah; Amaral, Joao G.; Amrahli, Maral; Amraoui, Sana; Andarawewa, Kumari; Andriyakhina, Yulia; Angstadt, Mary; Ankou, Bénédicte; Arias, Ana C.; Arvanitis, Costas; Asadnia, Kiana; Aubert, Isabelle; Aubry, Jean-Francois; Aubry, Jean-Francois; Aurup, Christian; Bader, Kenneth; Badr, Lena; Baek, Hongchae; Barbato, Gaetano; Beccaria, Kevin; Bellorofonte, Carlo; Benson, Lee; Bernus, Olivier; Berriet, Rémi; Bertolina, Jim; Beskin, Viktoriya; Bessière, Francis; Bethune, Allison; Bezzi, Mario; Bond, Aaron; Bonomo, Guido; Borowsky, Alexander; Borys, Nicolas; Böttcher, Joachim; Bouley, Donna; Bour, Pierre; Bourekas, Eric; Brenin, David; Brokman, Omer; Brosh, Inbar; Buckner, Andrew; Bullock, Timothy; Cafarelli, Andrea; Cahill, Jessica; Camarena, Francisco; Camelo-Piragua, Sandra; Campbell, Benjamin; Campbell, Fiona; Cannata, Jon; Canney, Michael; Carlson, Roy; Carneiro, Antonio; Carpentier, Alexandre; Catheline, Stefan; Cavin, Ian; Cesana, Claudio; Chabok, Hamid R.; Chamanara, Marzieh; Chang, Jin H.; Chang, Won S.; Changizi, Barbara; Chapelon, Jean Y.; Chaplin, Vandiver; Chapman, Martin; Chaudhary, Neeraj; Chaussy, Christian; Chen, Cherry; Chen, Johnny; Chen, Wohsing; Chen, Xiaoming; Chevalier, Philippe; Chiou, George; Chisholm, Alexander; Christofferson, Ivy; Chung, Hyun H.; Ciuti, Gastone; Clement, Gregory; Cooper, Mark; Corea, Joseph; Corso, Cristiano; Cosman, Josh; Coughlin, Dezba; Crake, Calum; Cunitz, Bryan; Curiel, Laura; Curley, Colleen T.; Czarnota, Gregory; Dababou, Susan; Dallapiazza, Robert; de Bever, Joshua; de Jager, Bram; de Ruiter, Joost; de Senneville, Baudouin D.; Deckers, Roel; Delattre, Jean-Yves; den Brok, Martijn; Dhanaliwala, Ali; Diodato, Alessandro; Dixon, Adam; Donner, Elizabeth; Downs, Matthew; Du, Zhongmin; Dubois, Rémi; Dupre, Aurelien; Eikelenboom, Dylan; Elias, W. J.; Ellens, Nicholas; Endre, Ruby; Eran, Ayelet; Erasmus, Hans-Peter; Everstine, Ashli; Farahani, Keyvan; Farrer, Alexis; Farry, Justin; Federau, Christian; Feng, Xue; Ferrer, Cyril; Ferrera, Vincent; Fishman, Paul; Foley, Jessica; Frenkel, Victor; Fütterer, Jurgen; Gach, H. M.; Gandhi, Dheeraj; Gertner, Michael; Goldsher, Dorit; Gorgone, Alessandro; Greillier, Paul; Griesenauer, Rebekah; Grissom, William; Grondin, Julien; Guha, Chandan; Gulati, Amitabh; Gullapalli, Rao; Guo, Sijia; Gupta, Samit; Gurm, Hitinder; Gwinn, Ryder; Hadley, Rock; Haïssaguerre, Michel; Hammoud, Dima; Hananel, Arik; Hargrove, Amelia; Hatch, Robert; Haworth, Kevin; Hazan, Eilon; He, Ye; Heemels, Maurice; Heerschap, Arend; Hilas, Elaine; Hoang-Xuan, Khe; Hocini, Mélèze; Hodaie, Mojgan; Hofmann, Denis; Holland, Christy; Hoogenboom, Martijn; Hopyan, Sevan; Hossack, John; Houdouin, Alexandre; Hsu, Po-Hung; Hu, Jim; Hurwitz, Mark; Huss, Diane; Hwang, Chang-il; Hwang, Joo H.; Idbaih, Ahmed; Ikeuchi, Masahiko; Ingham, Elizabeth; Ives, Kimberly; Izumi, Masashi; Jackson-Lewis, Vernice; Janát-Amsbury, Margit; Jang, Kee W.; Jedruszczuk, Kathleen; Jiménez-Gambín, Sergio; Jiménez, Noé; Johnson, Sara; Jonathan, Sumeeth; Joy, Joyce; Jung, Hyun H.; Jung, Na Y.; Kahn, Itamar; Kamimura, Hermes; Kamrava, Seyed K.; Kang, Jeeun; Kang, Kook J.; Kang, Soo Y.; Kao, Yi-tzu; Katti, Prateek; Kawasaki, Motohiro; Kaye, Elena; Keupp, Jochen; Kim, AeRang; Kim, Harry; Kim, Hyun-Chul; Kim, Hyuncheol; Kim, Hyungmin; Kim, Min S.; Kim, Namho; Kiyasu, Katsuhito; Kneepkens, Esther; Knopp, Michael; Kobus, Thiele; Koral, Korgun; Kreider, Wayne; Krishna, Vibhor; Krug, Roland; Krupa, Steve; Kuo, Chia-Chun; Kwiecinski, Wojciech; Lacoste, Romain; Lam, Heather; Lamberti-Pasculli, Maria; Lang, Brian; Larner, James; Larrabee, Zachary; Leach, J. K.; LeBlang, Suzanne; Leclercq, Delphine; Lee, Hak J.; Lee, Jong-Hwan; Lehericy, Stéphane; Leighton, Wan; Leung, Steven; Lewis, Bobbi; Lewis, Matthew; Li, Dawei; Linn, Sabine; Lipsman, Nir; Liu, Hao-Li; Liu, Jingfei; Lopes, M. B.; Lotz, Jeff; Lu, Xin; Lundt, Jonathan; Luo, Xi; Lustgarten, Lior; Lustig, Micheal; Macoskey, Jonathan; Madore, Bruno; Maev, Roman; Magat, Julie; Maimbourg, Guillaume; Maimon, Noam; Mainprize, Todd; Malayer, Jerry; Maples, Danny; Marquet, Fabrice; Marrocchio, Cristina; Marx, Mike; Mastorakos, Panagiotis; Mauri, Giovanni; McLean, Hailey; McMichael, John; Mead, Brian P.; Melodelima, David; Melot-Dusseau, Sandrine; Menciassi, Arianna; Merrill, Robb; Meyer, Joshua; Midiri, Massimo; Miga, Michael; Migliore, Ilaria G.; Miller, Eric; Minalga, Emilee; Moon, Hyungwon; Moore, David; Mourad, Pierre; Mouratidis, Petros; Mueller, Michael; Mugler, John; Muller, Sébastien; Namba, Hirofumi; Naor, Omer; Nassar, Maria; Nazai, Navid; Negron, Karina; Negussie, Ayele; Nguyen, Thai-Son; Nicolay, Klaas; Nikolaeva, Anastasia V.; Oetgen, Matthew; Olive, Kenneth; Olumolade, Oluyemi; Orsi, Franco; Owens, Gabe; Ozilgen, Arda; Padegimas, Linas; Palermo, Carmine; Pan, Chia-Hsin; Pandey, Aditya; Papadakis, Georgios; Park, Chang K.; Park, Sang M.; Parker, Jonathon; Parvizi, Mohammad H.; Pascal-Tenorio, Aurea; Patel, Janish; Patz, Sam; Payen, Thomas; Perich, Eloi; Pernot, Mathieu; Perol, David; Perry, James; Pillarisetty, Venu; Pioche, Mathieu; Pizzuto, Matthew; Plaksin, Michael; Plata, Juan; Price, Karl; Prince, Jessica; Przedborski, Serge; Quinones-Hinojosa, Alfredo; Ramachandran, Akhilesh; Ranjan, Ashish; Ravikumar, Vinod; Reichenbach, Juergen; Repasky, Elizabeth; Rezai, Ali; Ritter, Philippe; Rivoire, Michel; Rochman, Carrie; Rosenberg, Jarrett; Rosnitskiy, Pavel B.; Ruiz, Antonio; Sahgal, Arjun; Samiotaki, Gesthimani; Sanghvi, Narendra; Santin, Mathieu D.; Santos, Domiciano; Sasaki, Noboru; Sastra, Steve; Schade, George; Schall, Jeffrey; Schlesinger, Ilana; Schmitt, Paul; Schwaab, Julia; Scionti, Stephen; Scipione, Roberto; Scoarughi, Gian L.; Scott, Serena; Sebeke, Lukas; Seifabadi, Reza; Seo, Jai; Sesenoglu-Laird, Ozge; Shah, Binit; Shahriari, Kian; Shaikh, Sumbul; Shea, Jill; Shi, Jiaqi; Shim, Jenny; Shinkov, Alexander; Shuman, Jillian; Silvestrini, Matthew; Sim, Changbeom; Sin, Vivian; Sinai, Alon; Singh, Manoj; Sinilshchikov, Ilya; Skalina, Karin; Slingluff, Craig; So, Po-Wah; Solomon, Stephen; Son, Keon H.; Sperling, Scott; Stein, Ruben; Stein, Sherman; Stevens, Aaron; Stimec, Jennifer; Storm, Gert; Straube, William; Suelmann, Britt; Sutton, Jonathan; Svedin, Bryant; Takemasa, Ryuichi; Takiguchi, Mitsuyoshi; Tam, Emily; Tan, Jeremy; Tang, Xinyan; Tanter, Mickael; Tebebi, Pamela; Tehrani, Seruz; Temple, Michael; Teofilovic, Dejan; ter Haar, Gail; Terzi, Marina E.; Thueroff, Stefan; Timbie, Kelsie; Tognarelli, Selene; Tretbar, Steffen; Trudeau, Maureen; Tsai, Yi-Chieh; Tsysar, Sergey A.; Tucci, Samantha; Tuveson, David; Ushida, Takahiro; Vaessen, Paul; Vaillant, Fanny; Van Arsdell, Glen; van Breugel, Johanna; Van der Jeugd, Anneke; Van der Jeugd, Anneke; Van der Wall, Elsken; van Diest, Paul; van Stralen, Marijn; Varano, Gianluca; Velat, Manuela; Vidal-Jove, Joan; Vigna, Paolo D.; Vignot, Alexandre; Vincenot, Jeremy; Vykhodtseva, Natalia; Wang, Bin; Wang, Han; Wang, Kevin; Wang, Qi; Wang, Qingguo; Wang, Shengping; Wang, Yak-Nam; Wang, Zhaorui; Wardlow, Rachel; Warren, Amy; Waszczak, Barbara; Watson, Katherine; Webb, Taylor; Wei-Bin, Shen; Wei, Kuo-Chen; Weiss, Steffen; Weissler, Yoni; Werner, Beat; Wesseling, Pieter; Williams, Noelle; Wilson, Emmanuel; Wintermark, Max; Witkamp, Arjen; Wong, Carlos; Wu, Jing-Fu; Wydra, Adrian; Xu, Alexis; Xu, Doudou; Xu, Su; Yang, Georgiana; Yang, Nai-Yi; Yao, Chen; Yarowsky, Paul; Ye, Patrick P.; Yuldashev, Petr; Zaaroor, Menashe; Zachiu, Cornel; Zahos, Peter; Zangos, Stephan; Zhang, Dandan; Zhang, Hua; Zhang, Jimin; Zhang, Junhai; Zhang, Xi; Zhao, Li; Zhong, Pei; Zhuo, Jiachen; Zidowitz, Stephan; Zinke, Wolf; Zorgani, Ali (2016-11-21)
- Artificial Neuronal Devices Based on Emerging Materials: Neuronal Dynamics and ApplicationsLiu, Hefei; Qin, Yuan; Chen, Hung-Yu; Wu, Jiangbin; Ma, Jiahui; Du, Zhonghao; Wang, Nan; Zou, Jingyi; Lin, Sen; Zhang, Xu; Zhang, Yuhao; Wang, Han (Wiley-V C H Verlag, 2023-03)Artificial neuronal devices are critical building blocks of neuromorphic computing systems and currently the subject of intense research motivated by application needs from new computing technology and more realistic brain emulation. Researchers have proposed a range of device concepts that can mimic neuronal dynamics and functions. Although the switching physics and device structures of these artificial neurons are largely different, their behaviors can be described by several neuron models in a more unified manner. In this paper, the reports of artificial neuronal devices based on emerging volatile switching materials are reviewed from the perspective of the demonstrated neuron models, with a focus on the neuronal functions implemented in these devices and the exploitation of these functions for computational and sensing applications. Furthermore, the neuroscience inspirations and engineering methods to enrich the neuronal dynamics that remain to be implemented in artificial neuronal devices and networks toward realizing the full functionalities of biological neurons are discussed.
- Multidimensional device architectures for efficient power electronicsZhang, Yuhao; Udrea, Florin; Wang, Han (Springer Nature, 2022-11-17)Power semiconductor devices are key to delivering high-efficiency energy conversion in power electronics systems, which is critical in efforts to reduce energy loss, cut carbon dioxide emissions and create more sustainable technology. Although the use of wide or ultrawide-bandgap materials will be required to develop improved power devices, multidimensional architectures can also improve performance, regardless of the underlying material technology. In particular, multidimensional device architectures—such as superjunction, multi-channel and multi-gate technologies—can enable advances in the speed, efficiency and form factor of power electronics systems. Here we review the development of multidimensional device architectures for efficient power electronics. We explore the rationale for using multidimensional architectures and the different architectures available. We also consider the performance limits, scaling and material figure of merits of the architectures, and identify key technological challenges that need to be addressed to realize the full potential of the approach.
- Superjunction Power Transistors With Interface Charges: A Case Study for GaNMa, Yunwei; Xiao, Ming; Zhang, Ruizhe; Wang, Han; Zhang, Yuhao (2019-12-13)Recent progress in p-GaN trench-filling epitaxy has shown promise for the demonstration of GaN superjunction (SJ) devices. However, the presence of n-type interface charges at the regrowth interfaces has been widely observed. These interface charges pose great challenges to the design and performance evaluation of SJ devices. This work presents an analytical model for SJ devices with interface charges for the first time. In our model, two approaches are proposed to compensate interface charges, by the modulation of the SJ doping or the SJ geometry. Based on our model, an analytical study is conducted for GaN SJ transistors, revealing the design windows and optimal values of doping concentration and pillar width as a function of interface charge density. Finally, TCAD simulation is performed for vertical GaN SJ transistors, which validated our analytical model. Our results show that, with optimal designs, interface charges would only induce small degradation in the performance of GaN SJ devices. However, with the increased interface charge density, the design windows for pillar width and doping concentration become increasingly narrow and the upper limit in the pillar width window reduces quickly. When the interface charge density exceeds similar to 3X10(12) cm(-2), the design window of pillar width completely falls into the sub-micron range, indicating significant difficulties in fabrication. Vertical GaN SJ transistors with interface charges retain great advantages over conventional GaN power transistors, but have narrower design windows and require different design rules compared to ideal GaN SJ devices.