Browsing by Author "Wang, Kaidi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Comparison of machine learning algorithms for emulation of a gridded hydrological model given spatially explicit inputsLim, Theodore C.; Wang, Kaidi (Elsevier, 2022-02-01)This study compares the performance of several machine learning algorithms in reproducing the spatial and temporal outputs of the process-based, hydrological model, ParFlow.CLM. Emulators or surrogate models are often used to reduce complexity and simulation times of complex models, and have typically been applied to evaluate parameter sensitivity or for model parameter tuning, without explicit treatment of variation resulting from spatially explicit inputs to the model. Here we present a case study in which we evaluate candidate machine learning algorithms for suitability emulating model outputs given spatially explicit inputs. We find that among random forest, gaussian process, k-nearest neighbors, and deep neural networks, the random forest algorithm performs the best on small training sets, is not as sensitive to hyperparameters chosen for the machine learning model, and can be trained quickly. Although deep neural networks were hypothesized to be able to better capture the potential nonlinear interactions in ParFlow.CLM, they also required more training data and much more refined tuning of hyperparameters to achieve the potential benefits of the algorithm.
- The Dynamics of the Impacts of Automated Vehicles: Urban Form, Mode Choice, and Energy Demand DistributionWang, Kaidi (Virginia Tech, 2021-08-24)The commercial deployment of automated vehicles (AVs) is around the corner. With the development of automation technology, automobile and IT companies have started to test automated vehicles. Waymo, an automated driving technology development company, has recently opened the self-driving service to the public. The advancement in this emerging mobility option also drives transportation reasearchers and urban planners to conduct automated vehicle-related research, especially to gain insights on the impact of automated vehicles (AVs) in order to inform policymaking. However, the variation with urban form, the heterogeneity of mode choice, and the impacts at disaggregated levels lead to the dynamics of the impacts of AVs, which not comprehensively understood yet. Therefore, this dissertation extends existing knowledge base by understanding the dynamics of the impacts from three perspectives: (1) examining the role of urban form in the performance of SAV systems; (2) exploring the heterogeneity of AV mode choices across regions; and (3) investigating the distribution of energy consumption in the era of AVs. To examine the first aspect, Shared AV (SAV) systems are simulated for 286 cities and the simulation outcomes are regressed on urban form variables that measure density, diversity, and design. It is suggested that the compact development, a multi-core city pattern, high level of diversity, as well as more pedestrian-oriented networks can promote the performance of SAVs measured using service efficiency, trip pooling success rate, and extra VMT generation. The AV mode choice behaviors of private conventional vehicle (PCV) users in Seattle and Knasas City metropolitan areas are examined using an interpretable machine learning framework based on an AV mode choice survey. It is suggested that attitudes and trip and mode-specific attributes are the most predictive. Positive attitudes can promote the adoption of PAVs. Longer PAV in-vehicle time encourages the residents to keep the PCVs. Longer walking distance promotes the usage of SAVs. In addition, the effects of in-vehicle time and walking distance vary across the two examined regions due to distinct urban form, transportation infrustructure and cultural backgrounds. Kansas City residents can tolerate shorter walking distance before switching to SAV choices due to the car-oriented environment while Seattle residents are more sensitive to in-vehicle travel time because of the local congestion levels. The final part of the dissertation examines the demand for energy of AVs at disaggregated levels incorporating heterogeneity of AV mode choices. A three-step framework is employed including the prediction of mode choice, the determination of vehicle trajectories, and the estimation of the demand for energy. It is suggested that the AV scenario can generate -0.36% to 2.91% extra emissions and consume 2.9% more energy if gasoline is used. The revealed distribution of traffic volume suggests that the demand for charging is concentrated around the downtown areas and on highways if AVs consume electricity. In summary, the dissertation demonstrates that there is a dynamics with regard to the impacts and performance of AVs across regions due to various urban form, infrastructure and cultural environment, and the spatial heterogeneity within cities.