The Dynamics of the Impacts of Automated Vehicles: Urban Form, Mode Choice, and Energy Demand Distribution

TR Number

Date

2021-08-24

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The commercial deployment of automated vehicles (AVs) is around the corner. With the development of automation technology, automobile and IT companies have started to test automated vehicles. Waymo, an automated driving technology development company, has recently opened the self-driving service to the public. The advancement in this emerging mobility option also drives transportation reasearchers and urban planners to conduct automated vehicle-related research, especially to gain insights on the impact of automated vehicles (AVs) in order to inform policymaking. However, the variation with urban form, the heterogeneity of mode choice, and the impacts at disaggregated levels lead to the dynamics of the impacts of AVs, which not comprehensively understood yet. Therefore, this dissertation extends existing knowledge base by understanding the dynamics of the impacts from three perspectives: (1) examining the role of urban form in the performance of SAV systems; (2) exploring the heterogeneity of AV mode choices across regions; and (3) investigating the distribution of energy consumption in the era of AVs.

To examine the first aspect, Shared AV (SAV) systems are simulated for 286 cities and the simulation outcomes are regressed on urban form variables that measure density, diversity, and design. It is suggested that the compact development, a multi-core city pattern, high level of diversity, as well as more pedestrian-oriented networks can promote the performance of SAVs measured using service efficiency, trip pooling success rate, and extra VMT generation.

The AV mode choice behaviors of private conventional vehicle (PCV) users in Seattle and Knasas City metropolitan areas are examined using an interpretable machine learning framework based on an AV mode choice survey. It is suggested that attitudes and trip and mode-specific attributes are the most predictive. Positive attitudes can promote the adoption of PAVs. Longer PAV in-vehicle time encourages the residents to keep the PCVs. Longer walking distance promotes the usage of SAVs. In addition, the effects of in-vehicle time and walking distance vary across the two examined regions due to distinct urban form, transportation infrustructure and cultural backgrounds. Kansas City residents can tolerate shorter walking distance before switching to SAV choices due to the car-oriented environment while Seattle residents are more sensitive to in-vehicle travel time because of the local congestion levels.

The final part of the dissertation examines the demand for energy of AVs at disaggregated levels incorporating heterogeneity of AV mode choices. A three-step framework is employed including the prediction of mode choice, the determination of vehicle trajectories, and the estimation of the demand for energy. It is suggested that the AV scenario can generate -0.36% to 2.91% extra emissions and consume 2.9% more energy if gasoline is used. The revealed distribution of traffic volume suggests that the demand for charging is concentrated around the downtown areas and on highways if AVs consume electricity. In summary, the dissertation demonstrates that there is a dynamics with regard to the impacts and performance of AVs across regions due to various urban form, infrastructure and cultural environment, and the spatial heterogeneity within cities.

Description

Keywords

Automated vehicles, Urban form, Mode choice, Interpretable machine learning, Distribution of energy consumption

Citation