Browsing by Author "Wang, Lei"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Genome sequences of wild and domestic bactrian camelsJirimutu; Wang, Zhen; Ding, Guohui; Chen, Gangliang; Sun, Yamin; Sun, Zhihong; Zhang, Heping; Wang, Lei; Hasi, Surong; Zhang, Yan; Li, Jianmei; Shi, Yixiang; Xu, Ze; He, Chuan; Yu, Siriguleng; Li, Shengdi; Zhang, Wenbin; Batmunkh, Mijiddorj; Ts, Batsukh; Narenbatu; Unierhu; Bat-Ireedui, Shirzana; Gao, Hongwei; Baysgalan, Banzragch; Li, Qing; Jia, Zhiling; Turigenbayila; Subudenggerile; Narenmanduhu; Wang, Zhaoxia; Wang, Juan; Pan, Lei; Chen, Yongcan; Ganerdene, Yaichil; Dabxilt; Erdemt; Altansha; Altansukh; Liu, Tuya; Cao, Minhui; Aruuntsever; Bayart; Hosblig; He, Fei; Zha-ti, A.; Zheng, Guangyong; Qiu, Feng; Sun, Zikui; Zhao, Lele; Zhao, Wenjing; Liu, Baohong; Li, Chao; Chen, Yunqin; Tang, Xiaoyan; Guo, Chunyan; Liu, Wei; Ming, Liang; Temuulen; Cui, Aiying; Li, Yi; Gao, Junhui; Li, Jing; Wurentaodi; Niu, Shen; Sun, Tao; Zhai, Zhengxiao; Zhang, Min; Chen, Chen; Baldan, Tunteg; Bayaer, Tuman; Li, Yixue; Meng, He (Springer Nature, 2012-11)Bactrian camels serve as an important means of transportation in the cold desert regions of China and Mongolia. Here we present a 2.01 Gb draft genome sequence from both a wild and a domestic bactrian camel. We estimate the camel genome to be 2.38 Gb, containing 20,821 protein-coding genes. Our phylogenomics analysis reveals that camels shared common ancestors with other even-toed ungulates about 55-60 million years ago. Rapidly evolving genes in the camel lineage are significantly enriched in metabolic pathways, and these changes may underlie the insulin resistance typically observed in these animals. We estimate the genome-wide heterozygosity rates in both wild and domestic camels to be 1.0 x 10(-3). However, genomic regions with significantly lower heterozygosity are found in the domestic camel, and olfactory receptors are enriched in these regions. Our comparative genomics analyses may also shed light on the genetic basis of the camel's remarkable salt tolerance and unusual immune system.
- Investigations into deep cracks in rocket motor propellant modelsWang, Lei (Virginia Tech, 1990)Star grain configuration design has been widely used in solid rocket applications for several decades. Although a large number of surface cracks are detected in the rocket motor propellants, the mechanism of these cracks is sull not well known due to the complex geometry of the grain. A stress-freezing photoelastic investigation has been performed to study the deep cracks which emanate from the fingertips of the star-shaped cutout cylinders. Using three-dimensional photoelasticity and proper algorithms in fracture mechanics, the stress intensity factors (SIF's) and the stress singularity orders along the crack front have been calculated. A surface effect on the dominant singularity order is observed and some analytical results are employed as a comparison. Meanwhile, three-dimensional finite element solution to the circular cylinder is used to find the “equivalent” inner radius for the internal star cylinder and the variation of SIF's along the crack border shows a very similar trend to the experimental results once the "equivalent" radius is adopted.
- Next Generation Frequency Disturbance Recorder Design and Timing AnalysisWang, Lei (Virginia Tech, 2010-05-21)In recent years, the subject of wide-area synchronized measurements has gained a significant amount of attention from the power system researchers. All of this started with the introduction of the Phasor Measurement Unit (PMU), which added a new perspective in the field of wide-area measurement systems (WAMS). With the ever evolving technologies over the years and the need for a more cost effective solution for synchronized frequency measurements, the Frequency Monitoring Network (FNET) was developed and introduced by the Power IT laboratory at Virginia Tech. The FNET is comprised of many Frequency Disturbance Recorders (FDR) geographically distributed throughout the United States. The FDR is a dedicated data acquisition device deployed at the distribution level, which allows for a lower cost and easily deployable WAMS solution. With Internet connectivity and GPS timing synchronization, the FDR provides high accuracy frequency, voltage magnitude and voltage angle data to the remote servers. Although the current FDR design is up to the standard in terms of the measurement accuracy and portability, it is of interest to further the research into alternative architectures and leverage the ever advancing technologies in high speed computing. One of the purposes of this dissertation is to present novel design options for a new generation of FDR hardware design. These design options will allow for more flexibility and to lower reliance on some vendor specific components. More importantly, the designs seek to allow for more computation processing capabilities so that more accurate frequency and angle measurements may be obtained. Besides the fact that the accuracy of frequency and angle measurement is highly dependent on the hardware and the algorithm, much can be said about the role of timing synchronization and its effects on accurate measurements. Most importantly, the accuracy of the frequency and angle estimation is highly dependent on the sampling time of local voltage angles. The challenges to accurate synchronized sampling are two folds. One challenge has to do with the inherent fallbacks of the GPS receiver, which is relatively high cost and limited in availability when the satellite signal is degraded. The other challenge is related to the timing inaccuracies of the sampling pulses, which is attributed to the remainder that results from the imperfect division of the processor counter. This dissertation addresses these issues by introducing the implementation of the high sensitivity (indoor) GPS and network timing synchronization, which aims to increase the availability of frequency measurements in locations that would not have been possible before. Furthermore, a high accuracy timing measurement system is introduced to characterize the accuracy and stability of the conventional crystal oscillator. To this end, a new method is introduced in close association with some prior work in generating accurate sampling time for FDR. Finally, a new method is introduced for modeling the FDR based on the sampling time measurements and some results are presented in order to motivate for more research in this area.
- Printed Circuit Board Design for Frequency Disturbance RecorderWang, Lei (Virginia Tech, 2005-12-12)The FDR (Frequency Disturbance Recorder) is a data acquisition device for the power system. The device is portable and can be used with any residential wall outlet for frequency data collection. Furthermore, the FDR transmits calculated frequency data to the web for access by authorized users via Ethernet connection. As a result, Virginia Tech implemented Frequency Monitoring Network (FNET) with these FDR devices. FNET is a collection of identical FDRs placed in different measurement sites to allow for data integration and comparison. Frequency is an important factor for power system control and stabilization. With funding and support provided by ABB, TVA and NSF the FDRs are placed strategically all over the United States for frequency analysis, power system protection and monitoring. The purpose of this study is to refine the current FDR hardware design and establish a new design that will physically fit all the components on one Printed Circuit Board (PCB). At the same time, the software that is to be implemented on the new board is to be kept similar if not the same as that of the current design. The current FDR uses the Axiom CME555 development board and it is interfaced to the external devices through its communication ports. Even through the CME555 board is able to meet the demands of the basic FDR operations, there are still several problems associated with this design. This paper will address some of those hardware problems, as well as propose a new board design that is specifically aimed for operations of FDR.
- Satellites reveal hotspots of global river extent changeWu, Qianhan; Ke, Linghong; Wang, Jida; Pavelsky, Tamlin M.; Allen, George H.; Sheng, Yongwei; Duan, Xuejun; Zhu, Yunqiang; Wu, Jin; Wang, Lei; Liu, Kai; Chen, Tan; Zhang, Wensong; Fan, Chenyu; Yong, Bin; Song, Chunqiao (Nature Portfolio, 2023-03-22)Rivers are among the most diverse, dynamic, and productive ecosystems on Earth. River flow regimes are constantly changing, but characterizing and understanding such changes have been challenging from a long-term and global perspective. By analyzing water extent variations observed from four-decade Landsat imagery, we here provide a global attribution of the recent changes in river regime to morphological dynamics (e.g., channel shifting and anabranching), expansion induced by new dams, and hydrological signals of widening and narrowing. Morphological dynamics prevailed in ~20% of the global river area. Booming reservoir constructions, mostly skewed in Asia and South America, contributed to ~32% of the river widening. The remaining hydrological signals were characterized by contrasting hotspots, including prominent river widening in alpine and pan-Arctic regions and narrowing in the arid/semi-arid continental interiors, driven by varying trends in climate forcing, cryospheric response to warming, and human water management. Our findings suggest that the recent river extent dynamics diverge based on hydroclimate and socio-economic conditions, and besides reflecting ongoing morphodynamical processes, river extent changes show close connections with external forcings, including climate change and anthropogenic interference.
- Study of surface cracks in a simulated solid rocket propellant grain with an internal star perforationWang, Lei (Virginia Tech, 1992)Solid propellant research has mainly been directed towards more accurate characterization of the propellant material nature and more reliable structural analysis of the grain. Internal star grain design is among the most popular grain shapes that are used in today's propulsion system. Due to its complex geometry, stress concentrations are inevitably present around the highly curved area. Furthermore, this geometric effect together with various loading conditions throughout the grain's service life actually causes numerous defects inside its body. However, little is known concerning the three-dimensional fracture mechanism of the surface cracks which are the most common defects detected in the real rocket motor grain. After a brief evaluation of the current status of solid propellant research, stress analysis of a star grain model under internal pressure was performed by both photoelastic experiments and finite element calculations. These results illustrated the stress concentration effect around the star finger tip in addition to the global stress distribution across the whole section. Meanwhile, the deformation of the grain's outer surface was also obtained from the finite element results. A series of photoelastic experiments was conducted on cracked specimens with surface flaws emanating both on and off the axis of symmetry starting from the star finger tip. For the symmetric crack problem, cracks with different depths were intensively studied and the three-dimensional stress intensity factor (SIF) distribution was obtained for each test. These experimental data were further used to construct three analytical models, the "equivalent" radius model, the weight function model and the notch-root crack model, to expand the application range of the experimental data base so that a symmetric crack's SIF distribution with an arbitrary depth can be predicted. Moreover, surface cracks initiated off the axis of symmetry were also investigated by considering two off-axis angles. The crack shape and propagation path were achieved through a series of experiments and two methods were developed to effectively predict the possible crack growth path under sufficient pressure. The SIF distribution around the crack border was obtained for different offaxis angles and the factors that might influence the distributions were addressed based on the comparisons between the symmetric and asymmetric cracks, and the asymmetric cracks with different geometries.