Browsing by Author "Wicks, Alfred L."
Now showing 1 - 20 of 318
Results Per Page
Sort Options
- Acoustic boundary condition estimation in a near-scale gas-turbine combustorWright, Andrew D. (Virginia Tech, 1996)A method for determining the specific acoustic admittance of the inlet and outlet ports of a combustion chamber is presented. Parameter estimation techniques of Gauss linearization and genetic algorithms are employed to recover the acoustic boundary conditions. These techniques are used with a combination of two resources: dynamic pressure measurements obtained during combustor operation, and a finite element method-based model of the combustion chamber. Results of a theoretical analysis are presented which show that the method is capable of accomplishing its mission. An observation of particular significance is the lack of sensitivity of the pressure mode shape to relatively large changes in the acoustic boundary conditions.
- Active Control Of Noise Radiated From Personal ComputersCharpentier, Arnaud (Virginia Tech, 2002-11-11)As an indirect consequence of increased heat cooling requirements, personal computers (PC) have become noisier due to the increased use of fans. Hard disk drives also contribute to the annoying noise radiated by personal computers, creating a need for the control of computer noise. Due to size constraints, the implementation of passive noise control techniques in PC is difficult. Alternatively, active noise control (ANC) may provide a compact solution to the noise problems discussed above, which is the subject of this work. First, the computer noise sources were characterized. The structure-borne path was altered passively through the decoupling of the vibrating sources from the chassis. Global noise control strategy was then investigated with a hybrid passive/active noise control technique based on folded lined ducts, integrating microphones and speakers, that were added to the PC air inlet and outlet. While the ducts were effective above 1000Hz, the use of a MIMO adaptive feedforward digital controller lead to significant noise reduction at the ducts outlets below 1000Hz. However, global performance was limited due to important airborne flanking paths. Finally, the same type of controller was used to create a zone of quiet around the PC user head location. It was implemented using multimedia speakers and microphones, while the computer was placed in a semi-reverberant environment. A large zone of quiet surrounding the head was created at low frequencies (250Hz), and its size would reduce with increasing frequency (up to 1000Hz).
- Active control of sound radiation due to subsonic wave scattering from discontinuities on thin elastic beamsGuigou, Catherine R. J. (Virginia Tech, 1992-07-05)Much progress has been made in recent years in active control of sound radiation from vibrating structures. Reduction of the far-field acoustic radiation can be obtained by directly modifying the response of the structure by applying structural inputs rather than by adding acoustic sources. Discontinuities, which are present in many structures are often important in terms of sound radiation due to wave scattering behavior at their location. In this thesis, an edge or boundary type discontinuity (clamped edge) and a point discontinuity (blocking mass) are analytically studied in terms of sound radiation. When subsonic vibrational waves impinge on these discontinuities, large scattered sound levels are radiated. Active control is then achieved by applying either control forces, which approximate shakers, or pairs of control moments, which approximate piezoelectric actuators, near the discontinuity. Active control of sound radiation from a simply-supported beam is also examined. For a single frequency, the flexural response of the beam subject to an incident wave or an input force (disturbance) and to control forces or control moments is expressed in terms of waves of both propagating and near-field types. The far-field radiated pressure is then evaluated in terms of the structural response, using Rayleigh's formula or a stationary phase approach, depending upon the application. The control force and control moment magnitudes are determined by optimizing a quadratic cost function, which is directly related to the control performance. On determining the optimal control complex amplitudes, these can be resubstituted in the constitutive equations for the system under study and the minimized radiated fields can be evaluated. High attenuation in radiated sound power and radiated acoustic pressure is found to be possible when one or two active control actuators are located near the discontinuity, as is shown to be mostly associated with local changes in beam response near the discontinuity.. The effect of the control actuators on the farfield radiated pressure, the wavenumber spectrum, the flexural displacement and the near-field time averaged intensity and pressure distributions are studied in order to further understand the control mechanisms. The influence of the near-field structural waves is investigated as well. Some experimental results are presented for comparison.
- Active control of sound transmission/radiation from elastic plates using multiple piezoelectric actuatorsWang, Bor-Tsuen (Virginia Tech, 1991)This thesis presents a theoretical analysis of active control of sound radiation from elastic plates with the use of piezoelectric transducers as actuators. A strain-energy model (SEM), based upon the conservation of strain energy, for a laminate beam with attached or embedded finite-length spatially distributed induced strain actuators was first developed to determine the induced strain distribution. The equivalent axial force and bending moment induced by the embedded or surface bonded actuators were also calculated. The one-dimensional SEM was then extended to a two-dimensional model by employing the classical laminate plate theory and utilizing Heaviside functions to integrate the actuator influence on the substructure. The mechanics model can determine the structural coupling effect and predict the structural response as a result of piezoelectric actuation. A baffled simply-supported rectangular plate subjected to harmonic disturbances was considered as the plant. Piezoceramic materials bonded to the surfaces of the plate or point force shakers were applied as control actuators. Both microphones in the radiated far-field and accelerometers located on the plate were considered as error sensors. In addition, distributed sensors for pressure and structural motion were modelled. The cost function was formulated as the modulus squared of the error signal. Linear quadratic optimal control theory was then applied to minimize the cost function to obtain the optimal input voltages to the actuators. Both near-field and far-field pressure and intensity responses as well as plate displacement distributions were presented to show the effectiveness and mechanisms of control for various configurations of the actuators and sensors. Plate wavenumber analysis was also shown to provide a further insight into control technique. The results show that piezoelectric actuators perform very well as control sources, and that pressure sensors have many advantages over acceleration sensors while distributed sensors are superior to discrete sensors. The optimal placement of multiple fixed size piezoelectric actuators in sound radiation control is also presented. A solution strategy is proposed to calculate the applied voltages to piezoelectric actuators with the use of linear quadratic optimal control theory. The location of piezoelectric actuator is then determined by minimizing an objective function, which is defined as the sum of the mean square sound pressure measured by a number of error microphones. The optimal location of piezoelectric actuators for sound radiation control is found so as to minimize the objective function and shown to be dependent on the excitation frequency. In particular, the optimal placement of multiple piezoelectric actuators for on-resonance and off-resonance excitation is presented. Results show that the optimally placed piezoelectric actuators perform far better in sound radiation control than arbitrarily selected. This work leads to a design methodology for adaptive or intelligent material systems with highly integrated actuators and sensors. The optimization procedure also leads to a reduction in the number of control transducers.
- Active damage control using artificial intelligence: initial studies into identification and mitigationKiel, David H. (Virginia Tech, 1993-06-05)This thesis presents an initial investigation into Active Damage Control (AD C) using Artificial Intelligence (AI). AI can alleviate the sometimes complicated task of modelling the system and also provides an adaptable solution process. The two research areas of ADC, damage identification and damage control, are studied in separate investigations. An AI technique called "rule induction" is used for the damage identification study. Velocity data from three plates (one without damage, one with damage at the center, and one with damage at the edge) are acquired using a laser data acquisition system. A set of rules is then induced from these data which accurately identifies which plates have damage and where the damage is located. With regard to the damage control, a real-time, machine-learning technique called "BOXES" is used to locally control the vibration of various systems by identifying their vibrational patterns. Using this technique, it is shown that the computer successfully learns an effective control law for various simulations using its trials and failures as the only learning information. It is also seen that the learning algorithm is somewhat less effective when experimentally applying this method to a pin-pin, aluminum beam. A discussion of possible improvements are presented in the future work section.
- Active Flow Control For Reduction of Unsteady Stator-Rotor Interaction In a Turbofan SimulatorFeng, Jinwei (Virginia Tech, 2000-10-10)The research effort presented in this dissertation consists of employing active trailing edge blowing control to reduce the unsteady stator-rotor interaction in a turbofan simulator. Two active flow control systems with different wake sensing approaches are successfully implemented on the engine simulator. The first flow control system utilizes Pitot probes as flow sensors. Use of Pitot probes as sensors is appropriate as a first step toward a more in depth investigation of active trailing edge blowing control. An upper performance limit in terms of wake-filling can be obtained and serves as the baseline in evaluating other control systems with indirect wake sensors. The ability of the system to achieve effective wake filling when subjected to a change in inlet flow conditions demonstrates the feasibility and advantage of active flow control. Significant tonal noise reductions in the far field are also obtained. The second control system involves using microphones as indirect wake sensors. The significance of these acoustic sensing approaches is to provide a practical TEB approach for realistic engines implementations. Microphones are flush mounted on the inlet case to sense the tonal noise at the blade passing frequency. The first sensing approach only uses the tone magnitude while the second novel sensing approach utilizes both the tone magnitude and phase as error information. The convergence rate of the second sensing approach is comparable with that of the Pitot-probe based experiments. The acoustic results obtained from both sensing approaches agree well with those obtained using Pitot probes as sensors. In addition to the experimental part of this research, analytical studies are also conducted on the trailing edge blowing modeling using an aeroacoustic code. An analytical model for trailing edge blowing is first proposed. This model is then introduced into the two-dimensional aeroacoustic code to investigate effect of various trailing edge blowing managements in the tonal sound generation.
- Adaptive Firmware Framework for Microcontroller DevelopmentTremaroli, Nicholas James (Virginia Tech, 2023-06-21)Firmware development for Low-Level Controllers is an extremely complex task. Single-threaded microcontrollers are most commonly used for these controllers and thus are only capable of executing a single task at a time. Microcontroller software tends to be designed for an extremely specific task with little room for scalability or code reuse. Additionally, the state of a microcontroller at run-time is very difficult to observe and thus makes it harder to debug and develop these control systems. To alleviate these development issues, a software framework was designed to simplify firmware development for Hardware Abstract Layered (HAL) control systems. The software framework was implemented on Texas Instruments TM4C123GXL Tivas on a multi-joint robot with the purpose of experimenting on a distributed microcontroller system. All of the software for the microcontroller was implemented into one program with initialization files from the high-level controller to configure each individual Tiva based on its functionality in the distributed system. The EtherCAT communication protocol is used primarily for its fast communication speed between high-level and low-level controllers. A basic GUI development environment accompanies the framework to aid in the initial development of a custom controller firmware and thus reduce development time. Additionally, this framework is designed to be easily scalable such that a real-time operating system (RTOS) can be implemented with minimal effort should the developer desire to do so. The proposed software framework thus overcomes major challenges when developing firmware for low-level controllers making development overall less time-consuming. Further, this framework can be used for many different robotic applications with a low-level multi-layered control architecture.
- Adaptive Predictor-Based Output Feedback Control of Unknown Multi-Input Multi-Output Systems: Theory and Application to Biomedical Inspired ProblemsNguyen, Chuong Hoang (Virginia Tech, 2016-06-03)Functional Electrical Stimulation (FES) is a technique that applies electrical currents to nervous tissue in order to actively induce muscle contraction. Recent research has shown that FES provides a promising treatment to restore functional tasks due to paralysis caused by spinal cord injury, head injury, and stroke, to mention a few. Therefore, the overarching goal of this research work is to develop FES controllers to enable patients with movement-disorder to control their limbs in a desired manner and, in particular, to aid Parkinson's patients to suppress hand tremor. In our effort to develop strategies for muscle stimulation control, we first implement a model-based control technique assuming that all the states are measurable. The Hill-type muscle model coupled with a simplified 2DoF model of the arm is used to study the performance of our proposed adaptive sliding mode controller for simulation purpose. However, in the more practical situations, human limb dynamics are extremely complicate and it is inadequate to use model based controllers, especially considering there are still technical limitations that allow in vivo measurements of muscle activity. To tackle these challenges, we have developed output feedback adaptive control approaches for a class of unknown multi-input multi-output systems. Such control strategies are first developed for linear systems, and then extended to the nonlinear case. The proposed controllers, supported by experimental results, require minimum knowledge of the system dynamics and avoid many restrictive assumptions typically found in the literature. Therefore, we expect that the results introduced in this dissertation can provide a solution for a wide class of nonlinear uncertain systems, with focus on practical issues such as partial state measurement and the presence of mismatched uncertainties.
- Advanced analysis of rotor-bearing systems for stability and responseRamesh, Krishnaswamy (Virginia Tech, 1996)Rotor dynamics has become an integral part in the analysis and design of industrial turbo machinery. Rotor dynamics deals predominantly with the evaluation of the stability and damped critical speeds, and the response to an unbalance excitation, of turbomachinery. The majority of the industries which deal with rotor dynamics use the conventional and proven transfer matrix methods to solve the dynamics. However, the recent advances in computer technology and the distinct advantages of the finite element method make it an attractive tool to model complex rotor bearing systems. This research has developed a PC-based finite element analysis program capable of modeling rotors supported not only on fluid film bearings, but also on Active Magnetic Beatings (AMB). Methods are described by which the non-synchronous bearing properties can be used to evaluate the stability of the rotors supported on AMB. The effect of sensor noncollocation on general elliptic orbit response and stability has also been studied, as compared to the circular response of the existing programs. A design procedure for the stability of rotors supported on squeeze film dampers has been outlined. The unbalance response of rotors supported on squeeze film dampers can be predicted using the new iterative solution method which accounts for the nonlinear behavior of the damper. Multilevel analysis, essential for systems such as aircraft jet engines and certain other classes of turbo machinery, can be performed using this new computer program. A post processor for viewing/animating the damped mode-shapes and force:d response of a rotor, in 3-dimensions, has been developed. This ability to view the animated complex modes of forward, backward, and mixed forward-backward whirl of the rotor adds a new dimension in understanding the dynamics of rotating machinery. With the increasing demand for more accurately predicting the dynamic response and stability of high performance critical path turbomachinery, it is essential to develop advanced capability computer programs. The new PC-based finite element program developed in this research has the advanced capabilities required to model such complex rotating machinery.
- Advanced Control Schemes for High-Bandwidth Multiphase Voltage RegulatorsLiu, Pei-Hsin (Virginia Tech, 2015-05-13)Advances in transistor-integration technology and multi-core technology of the latest microprocessors have driven transient requirements to become more and more stringent. Rather than relying on the bulky output capacitors as energy-storage devices, increasing the control bandwidth (BW) of the multiphase voltage regulator (VR) is a more cost-effective and space-saving approach. However, it is found that the stability margin of current-mode control in high-BW design is very sensitive to operating conditions and component tolerance, depending on the performance of the current-sensing techniques, modulation schemes, and interleaving approaches. The primary objective of this dissertation is to investigate an advanced multiphase current-mode control, which provides accurate current sensing, enhances the stability margin in high-BW design, and adaptively compensates the parameter variations. Firstly, an equivalent circuit model for generic current-mode controls using DCR current sensing is developed to analyze the impact of component tolerance in high-BW design. Then, the existing state-of-the-art auto-tuning method used to improve current-sensing accuracy is reviewed, and the deficiency of using this method in a multiphase VR is identified. After that, enlightened by the proposed model, a novel auto-tuning method is proposed. This novel method features better tuning performance, noise-insensitivity, and simpler implementation than the state-of-the-art method. Secondly, the current state-of-the-art adaptive current-mode control based on constant-frequency PWM is reviewed, and its inability to maintain adequate stability margin in high-BW design is recognized. Therefore, a new external ramp compensation technique is proposed to keep the stability margin insensitive to the operating conditions and component tolerance, so the proposed high-BW constant-frequency control can meet the transient requirement without the presence of bulky output capacitors. The control scheme is generic and can be used in various kinds of constant-frequency controls, such as peak-current-mode, valley-current-mode, and average-current-mode configurations. Thirdly, an interleaving technique incorporating an adaptive PLL loop is presented, which enables the variable-frequency control to push the BW higher than proposed constant-frequency control, and avoids the beat-frequency input ripple. A generic small-signal model of the PLL loop is derived to investigate the stability issue caused by the parameter variations. Then, based on the proposed model, a simple adaptive control is developed to allow the BW of the PLL loop to be anchored at the highest phase margin. The adaptive PLL structure is applicable to different types of variable-frequency control, including constant on-time control and ramp pulse modulation. Fourthly, a hybrid interleaving structure is explored to simplify the implementation of the adaptive PLL structure in an application with more phases. It combines the adaptive PLL loop with a pulse-distribution technique to take the advantage of the high-BW design and fast transient response without adding a burden to the controller implementation. As a conclusion, based on the proposed analytical models, effective control concepts, systematic optimization strategies, viable implementations are fully investigated for high-BW current-mode control using different modulation techniques. Moreover, all the modeling results and the system performance are verified through simulation with a practical output filter model and an advanced mixed-signal experimental platform based on the latest MHz VR design on the laptop motherboard. In consequence, the multiphase VRs in future computation systems can be scalable easier with proposed multiphase configurations, increase the system reliability with proposed adaptive loop compensation, and minimize the total system footprint of the VR with the superior transient performance.
- Advanced sensing techniques for active structural acoustic controlClark, Robert L. Jr. (Virginia Tech, 1992-02-12)This study presents a basis for the analytical and experimental procedures as well as design techniques required in achieving adaptive structures for active structural acoustic control (ASAC). Test structures studied in this work included a baffled simply supported beam and a baffled simply supported plate which were subjected to a harmonic input disturbance created physically with a shaker and modelled by a point force input. Structural acoustic control was achieved with piezoelectric actuators bonded to the surface of the test structure. The primary focus of this work was devoted to studying alternative sensing techniques in feed forward control applications. Specifically, shaped distributed structural sensors constructed from polyvinylidene fluoride (PVDF), distributed acoustic near-field sensors constructed from PVDF, and accelerometers were explored as alternatives to microphones which are typically implemented as error sensors in the cost function of the control approach. The chosen control algorithm in this study was the feed forward filtered-x version of the adaptive LMS algorithm. A much lower level of system modelling is required with this method of control in comparison to state feedback control methods. As a result, much of the structural acoustic coupling (i.e. system modelling) must be incorporated into the sensor design.
- Advanced Time Domain Sensing For Active Structural Acoustic ControlMaillard, Julien (Virginia Tech, 1997-02-27)Active control of sound radiation from vibrating structures has been an area of much research in the past decade. In Active Structural Acoustic Control (ASAC), the minimization of sound radiation is achieved by modifying the response of the structure through structural inputs rather than by exciting the acoustic medium (Active Noise Control, ANC). The ASAC technique often produces global far-field sound attenuation with relatively few actuators as compared to ANC. The structural control inputs of ASAC systems are usually constructed adaptively in the time domain based on a number of error signals to be minimized. One of the primary concerns in active control of sound is then to provide the controller with appropriate ``error'' information. Early investigations have implemented far-field microphones, thereby providing the controller with actual radiated pressure information. Most structure-borne sound control approaches now tend to eliminate the use of microphones by developing sensors that are integrated in the structure. This study presents a new sensing technique implementing such an approach. A structural acoustic sensor is developed for estimating radiation information from vibrating structures. This technique referred to as Discrete Structural Acoustic Sensing (DSAS) provides time domain estimates of the radiated sound pressure at prescribed locations in the far field over a broad frequency range. The structural acoustic sensor consists of a set of accelerometers mounted on the radiating structure and arrays of digital filters that process the measured acceleration signals in real time. The impulse response of each filter is constructed from the appropriate radiation Green's function for the source area associated with each accelerometer. Validation of the sensing technique is performed on two different systems: a baffled rectangular plate and a baffled finite cylinder. For both systems, the sensor is first analyzed in terms of prediction accuracy by comparing estimated and actual sound pressure radiated in the far field. The analysis is carried out on a numerical model of the plate and cylinder as well as on the real structures through experimental testing. The sensor is then implemented in a broadband radiation control system. The plate and cylinder are excited by broadband disturbance inputs over a frequency range encompassing several of the first flexural resonances of the structure. Single-sided piezo-electric actuators provide the structural control inputs while the sensor estimates are used as error signals. The controller is based on the filtered-x version of the adaptive LMS algorithm. Results from both analytical and experimental investigations are again presented for the two systems. Additional control results based on error microphones allow a comparison of the two sensing approaches in terms of control performance. The major outcome of this study is the ability of the structural acoustic sensor to effectively replace error microphones in broadband radiation control systems. In particular, both analytical and experimental results show the level of sound attenuation achieved when implementing Discrete Structural Acoustic Sensing rivaled that achieved with far-field error microphones. Finally, the approach presents a significant alternative over other existing structural sensing techniques as it requires very little system modeling.
- Advancements in the Split Hopkinson Bar TestKaiser, Michael Adam (Virginia Tech, 1998-05-01)The split Hopkinson bar test is the most commonly used method for determining material properties at high rates of strain. The theory governing the specifics of Hopkinson bar testing has been around for decades. It has only been the last decade or so, however, that significant data processing advancements have been made. It is the intent of this thesis to offer the insight of its author towards new advancements. The split Hopkinson bar apparatus consists of two long slender bars that sandwich a short cylindrical specimen between them. By striking the end of a bar, a compressive stress wave is generated that immediately begins to traverse towards the specimen. Upon arrival at the specimen, the wave partially reflects back towards the impact end. The remainder of the wave transmits through the specimen and into the second bar, causing irreversible plastic deformation in the specimen. It is shown that the reflected and transmitted waves are proportional to the specimen's strain rate and stress, respectively. Specimen strain can be determined by integrating the strain rate. By monitoring the strains in the two bars, specimen stress-strain properties can be calculated. Several factors influence the accuracy of the results, including longitudinal wave dispersion, impedance mismatch of the bars with the specimens, and transducer properties, among others. A particular area of advancement is a new technique to determine the bars dispersive nature, and hence reducing the distorting effects. By implementing numerical procedures, precise alignment of the strain pulses is facilitated. It is shown that by choosing specimen dimensions based on their impedance, the transmitted stress signal-to-noise ratio can be improved by as much as 25dB. An in depth discussion of realistic expectations of strain gages is presented, along with closed form solutions validating any claims. The effect of windowing on the actual strains is developed by analyzing the convolution of a rectangular window with the impact pulse. The thesis concludes with a statistical evaluation of test results. Several recommendations are then made for pursuing new areas of continual research.
- Aerodynamic Investigation of Upstream Misalignment over the Nozzle Guide Vane in a Transonic CascadeLee, Yeong Jin (Virginia Tech, 2017-06-06)The possibility of misalignments at interfaces would be increased due to individual parts' assembly and external factors during its operation. In actual engine representative conditions, the upstream misalignments have effects on turbines performance through the nozzle guide vane passages. The current experimental aerodynamic investigation over the nozzle guide vane passage was concentrated on the backward-facing step of upstream misalignments. The tests were performed using two types of vane endwall platforms in a 2D linear cascade: flat endwall and axisymmetric converging endwall. The test conditions were a Mach number of 0.85, Re_ex 1.5*10^6 based on exit condition and axial chord, and a high freestream turbulence intensity (16%), at the Virginia tech transonic cascade wind tunnel. The experimental results from the surface flow visualization and the five-hole probe measurements at the vane-passage exit were compared with the two cases with and without the backward-facing step for both types of endwall platforms. As a main source of secondary flow, a horseshoe vortex at stagnation region of the leading edge of the vane directly influences other secondary flows. The intensity of the vortex is associated with boundary layer thickness of inlet flow. In this regard, the upstream backward-facing step as a misalignment induces the separation and attachment of the inlet flow sequentially, and these cause the boundary layer of the inlet flow to reform and become thinner locally. The upstream-step positively affects loss reduction in aerodynamics due to the thinner inlet boundary layer, which attenuates a horseshoe vortex ahead of the vane cascade despite the development of the additional vortices. And converging endwall results in an increase of the effect of the upstream misalignment in aerodynamics, since the inlet boundary layer becomes thinner near the vane's leading edge due to local flow acceleration caused by steep contraction of the converging endwall. These results show good correlation with many previous studies presented herein.
- Agricultural Crop Monitoring with Computer VisionBurns, James Ian (Virginia Tech, 2014-09-25)Precision agriculture allows farmers to efficiently use their resources with site-specific applications. The current work looks to computer vision for the data collection method necessary for such a smart field, including cameras sensitive to visual (430-650~nm), near infrared (NIR,750-900~nm), shortwave infrared (SWIR,950-1700~nm), and longwave infrared (LWIR,7500-16000~nm) light. Three areas are considered in the study: image segmentation, multispectral image registration, and the feature tracking of a stressed plant. The accuracy of several image segmentation methods are compared. Basic thresholding on pixel intensities and vegetation indices result in accuracies below 75% . Neural networks (NNs) and support vector machines (SVMs) label correctly at 89% and 79%, respectively, when given only visual information, and final accuracies of 97% when the near infrared is added. The point matching methods of Scale Invariant Feature Transform (SIFT) and Edge Orient Histogram (EOH) are compared for accuracy. EOH improves the matching accuracy, but ultimately not enough for the current work. In order to track the image features of a stressed plant, a set of basil and catmint seedlings are grown and placed under drought and hypoxia conditions. Trends are shown in the average pixel values over the lives of the plants and with the vegetation indices, especially that of Marchant and NIR. Lastly, trends are seen in the image textures of the plants through use of textons.
- Algorithms for Tomographic Reconstruction of Rectangular Temperature Distributions using Orthogonal Acoustic RaysKim, Chuyoung (Virginia Tech, 2016-09-09)Non-intrusive acoustic thermometry using an acoustic impulse generator and two microphones is developed and integrated with tomographic techniques to reconstruct temperature contours. A low velocity plume at around 450 °F exiting through a rectangular duct (3.25 by 10 inches) was used for validation and reconstruction. 0.3 % static temperature relative error compared with thermocouple-measured data was achieved using a cross-correlation algorithm to calculate speed of sound. Tomographic reconstruction algorithms, the simplified multiplicative algebraic reconstruction technique (SMART) and least squares method (LSQR), are investigated for visualizing temperature contours of the heated plume. A rectangular arrangement of transmitter and microphones with a traversing mechanism collected two orthogonal sets of acoustic projection data. Both reconstruction techniques have successfully recreated the overall characteristic of the contour; however, for the future work, the integration of the refraction effect and implementation of additional angled projections are required to improve local temperature estimation accuracy. The root-mean-square percentage errors of reconstructing non-uniform, asymmetric temperature contours using the SMART and LSQR method are calculated as 20% and 19%, respectively.
- The Analysis and Creation of Track Irregularities Using TRAKVUKramp, Kenneth P. (Virginia Tech, 1998-06-30)The accuracy of the results from a rail vehicle dynamic model is dependent on the realism of the track input to the model. An important part of the track input is the irregularities that exist on actual track. This study analyzes the irregularities inherent in railroad track geometry data, and provides an analytical method for creating track data with the irregularities for use as the input to a dynamic model. Track data, measured from various classes of track, was examined using statistical and frequency analysis techniques to identify any similarities in the characteristics of the irregularities. The results showed that each class of track had a distinctive value for the standard deviation of the alignment and profile data. It was also determined that the frequency content of all the tracks was contained within a common bandwidth. The track irregularities could then be generated with the same characteristics as an actual track. The method for creating the track irregularities was then programmed into TRAKVU. TRAKVU is a track preprocessor used in conjunction with NUCARS, a railcar dynamic modeling program¹. TRAKVU enables users to create track data and apply the appropriate irregularities so that the track will have the characteristics of the desired class of track. A validation was then performed to determine how well track created in TRAKVU simulated actual tracks. The statistical and frequency characteristics of created tracks were compared directly with actual tracks. Created track was also used as the input to a dynamic model. The predicted vehicle response was then compared to the actual vehicle response and the predicted vehicle response using measured track data as the input. The results from the validation showed that the created track performed as well as the measured track in providing the input to the model. Although the predicted response using the created track did not compare as well with the actual vehicle response, the differences could be attributed to inaccuracies in the model. ¹NUCARS and TRAKVU are copyrighted property of the Association of American Railroads.
- Analysis of Hybrid Electric Autonomous Tactical Support SystemTweedy, Phillip (Virginia Tech, 2011-09-21)The modern day expeditionary warfighter faces extraordinary challenges in the battle field and being a beast of burden should not be one of them. Currently the dismounted warfighter is impeded with carrying over 100lbs of tactical gear and supplies for multiday missions in remote territory. Expeditionary forces are also facing an energy and logistical crisis getting water, fuel, and batteries to the tip of the spear. Finding ways to enable self-sufficiency and reducing resupply tethers for small unit operations is a high priority for the armed forces. The Hybrid Electric Autonomous Tactical Support System directly and efficiently tackles both problems head on by synergizing efforts to lighten the load and self sustaining base power by combining the capabilities of the Ground Unmanned Support Surrogate (GUSS) and the Experimental Forward Operating Base projects. Hybridization of the drivetrain of the GUSS vehicle will provide the reliable power for onboard autonomous systems and also enable silent operation modes. The hybrid onboard generator can efficiently provide generous amounts of exportable DC and AC power on demand and is an ideally sized backup/primary power system for small unit bases and forward command posts. The vehicle's onboard energy storage and generator system can also be linked with renewable energy sources to demonstrate the tactical smart mini grid concept. This thesis develops the power requirements for an autonomous system, GUSS mission derived hybrid electric drivetrain specifications, and Marine Corps small echelon bases for the development of the multifunction Hybrid Electric Autonomous Tactical Support System.
- Analysis of the Dynamic Interferences Between the Stator and Rotor of a Refrigeration Compressor MotorThompson, Swen (Virginia Tech, 1997-07-05)This thesis involves the development and study of a finite element model of a hermetic, single-vane compressor and a single-phase alternating current induction motor assembled in a common housing. The manufacturer of this unit is experiencing a high scrap rate due to interference during operation between the stator and rotor of the motor. The rotor shaft of the motor is non-typical because of its cantilever design. The finite element model was first subjected to eigenvalue analysis. This revealed that the interference producing displacements were not the result of torque application to the rotor at a frequency close to an eigenvalue of the mechanical system. After a review of the literature and discussions with Electrical Engineering Department faculty possessing extensive motor experience, it was surmised that the physical phenomenon causing the rotor displacement was unbalanced magnetic pull. This phenomenon occurs in the air gap of rotating electric machines due to eccentricity in the air gap. The model was then subjected to simultaneous harmonic force inputs with magnitudes of unity on the rotor and stator surfaces to simulate the presence of unbalanced magnetic pull. It was found that the rotor shaft acts as a cantilever beam while the stator and housing are essentially rigid. The displacements due to these forces were examined and then scaled to develop the motor parameters necessary to produce the radial forces required for stator/rotor interference. Several recommendations were then made regarding possible solutions to the interference problem.
- Anomaly Detection in Heterogeneous Data Environments with Applications to Mechanical Engineering Signals & SystemsMilo, Michael William (Virginia Tech, 2013-11-08)Anomaly detection is a relevant problem in the field of Mechanical Engineering, because the analysis of mechanical systems often relies on identifying deviations from what is considered "normal". The mechanical sciences are represented by a heterogeneous collection of data types: some systems may be highly dimensional, may contain exclusively spatial or temporal data, may be spatiotemporally linked, or may be non-deterministic and best described probabilistically. Given the broad range of data types in this field, it is not possible to propose a single processing method that will be appropriate, or even usable, for all data types. This has led to human observation remaining a common, albeit costly and inefficient, approach to detecting anomalous signals or patterns in mechanical data. The advantages of automated anomaly detection in mechanical systems include reduced monitoring costs, increased reliability of fault detection, and improved safety for users and operators. This dissertation proposes a hierarchical framework for anomaly detection through machine learning, and applies it to three distinct and heterogeneous data types: state-based data, parameter-driven data, and spatiotemporal sensor network data. In time-series data, anomaly detection results were robust in synthetic data generated using multiple simulation algorithms, as well as experimental data from rolling element bearings, with highly accurate detection rates (>99% detection, <1% false alarm). Significant developments were shown in parameter-driven data by reducing the sample sizes necessary for analysis, as well as reducing the time required for computation. The event-space model extends previous work into a geospatial sensor network and demonstrates applications of this type of event modeling at various timescales, and compares the model to results obtained using other approaches. Each data type is processed in a unique way relative to the others, but all are fitted to the same hierarchical structure for system modeling. This hierarchical model is the key development proposed by this dissertation, and makes both novel and significant contributions to the fields of mechanical analysis and data processing. This work demonstrates the effectiveness of the developed approaches, details how they differ from other relevant industry standard methods, and concludes with a proposal for additional research into other data types.