Browsing by Author "Zhang, Chenming Mike"
Now showing 1 - 20 of 32
Results Per Page
Sort Options
- Antibody Purification from Tobacco by Protein A Affinity ChromatographyHey, Carolyn McKenzie (Virginia Tech, 2010-04-29)Antibodies represent the largest group of biopharmaceuticals. Due to the nature of their clinical applications, they often need to be produced in large quantities. Plants have distinct advantages of producing large quantities of recombinant proteins, and tobacco is arguably the most promising plant for plant-made-pharmaceuticals (PMP) due to its high biomass yields and robust transformation technology. However, to produce proteins using transgenic tobacco for human applications, purification of the proteins is challenging. On the other hand, Protein A, a bacterial cell wall protein isolated from Staphylococcus aureus that binds to the Fc regions of immunoglobulins, is useful to the isolation and purification of antibodies. An affinity chromatography purification step utilizing Protein A resin introduced early in the purification process can reduce successive unit operations, thereby reducing the overall process cost. However, directly applying tobacco extract to Protein A chromatography columns may be problematic due to the non-specific binding of native tobacco proteins (NTP). In this project, three different Protein A resins, ProSepvA High Capacity, ProSep-vA Ultra, and ProSep Ultra Plus, marketed by Millipore, were studied to provide valuable information for future downstream processes for antibody purification from transgenic tobacco. The efficiency of the post load wash buffer to reduce non-specific binding of NTP to the ProSep A resins were evaluated by altering the ionic strength and pH. Lower salt concentrations of sodium chloride (NaCl) in the post load wash preformed best at reducing the non-specific binding of NTP to the ProSep A resins, while higher salt concentrations were more effective at reducing the amount of NTP contaminants present during elution of the columns. Using a post load wash buffer with an intermediate pH between the binding buffer and the elution buffer was more efficient at eluting our model antibody, human IgG. However, lowering the ionic strength and the pH of the post load wash buffer resulted in a greater presence of IgG prematurely eluting from the ProSep A resins. The non-specific binding of NTP to the resins reduced the dynamic binding capacity (DBC) of the resins after repeated cycles of tobacco extract samples were loaded onto the column. Nevertheless, cleaning the columns with denaturing solutions, such as urea or guanidine hydrochloride, every 8-10 cycles was effective in regenerating the DBC of the resins and prolonging the life cycle of the resins. This is important to evaluating the economic feasibility of directly using Protein A chromatography to recover antibodies from tobacco extract. Of the three Protein A resins studied, ProSep Ultra Plus performed best for antibody purification from tobacco using a PBS wash buffer with a lower ionic strength of 140mM NaCl and an intermediate pH of 5.
- Assembly, characterization and evaluation of a 3rd generation nanoparticle based drug carrier for metastatic breast cancer treatmentHuang, Wei (Virginia Tech, 2013-06-03)Cancer is one of the leading causes of death in the world. For women in the U.S. and the European countries, breast cancer is the most common type and it continuously threatens the lives of the patients and causes huge economic losses. Chemotherapy and endocrine therapy are the common treatments for recurrence prevention and metastatic cancer symptom palliation. However, the uses of these therapies are meanwhile largely limited because their toxic side effects and non-specificity usually lead to low quality lives of the patients. Low aqueous solubility, multi-drug resistance, degradation of drug, limited intra-tumor diffusion and etc. are other limitations of conventional chemotherapies and endocrine therapies. Nanoparticle based drug carriers were extensively studied for therapeutic drug delivery. Many carriers could be loaded with high dose of hydrophobic and hydrophilic drugs, protect the drug from the surrounding in vivo environment during the transportation, specifically target and enter the tumor cells and slowly release the drug thereafter. Advanced nanoparticle drug carriers are studied driven by the need of a more efficient drug delivery. The 3rd generation of nanoparticle based drug carriers are recently developed. They usually consist of more than one type of nanoparticles. Different part of the particle has more specialized functions. Therefore, by carefully selecting from the conventional nanoparticle carriers, a 3rd generation particle could have the properties such as high loading capacity of multiple drugs, prolonged half-life in circulation, higher tendency of accumulating at the tumor site, improved specificity to the tumor cells, higher cell uptake rate and accurately triggered controlled release, and combination of the above-mentioned properties. In our study, a paclitaxel loaded nanoparticle supported immunoliposome was assembled for metastatic breast cancer drug delivery. Functionalized single walled carbon nanohorn or poly(lactic-co-glycolic acid) was encapsulated in the polyethylene glycol (PEG) coated liposome for high drug loading and controlled release. Anti-Her2 antibody or Herceptin® was grafted onto the surface of the liposome for a higher affinity to the Her2 overexpressing breast cancer cells. Firstly, the conjugation of protein to the surface of liposome and PEGylated liposomes were investigated. Proteins with or without membrane binding domain were conjugated to liposome and PEGylated liposomes through covalent and non-covalent binding for comparison. A modified enzyme-linked immune sorbent assay was developed for surface grafted protein quantification. Secondly, the encapsulation of solid nanoparticle into PEGylated immunoliposome was investigated. Results showed a new structure of solid nanoparticle in PEGylated immunoliposome at a 1:1 ratio was formed during the repeated freeze-thawing process. Supported immunoliposomes with high homogeneity in size and structure were purified by sucrose density gradient centrifugation. Thirdly, the drug loading, triggered release, cell binding, cell uptake and cell toxicities of the supported immunoliposome were studied. Release results showed a minimum drug leakage in serum at body temperature from the particle. The release was initiated with a minor burst trigged by low pH inside the tumor cell and followed with a long term linear pattern. Cell assay results showed the highest binding affinity of the antibody or Herceptin® grafted nanoparticles to Her2 overexpressing cell lines and a lysosomal intracellular distribution of the endocytosised particles. In the final study, a fabrication process for polymeric material nanoparticles was established. The process was capable of providing accurate control of the particle size with significant high output rates, thus largely extends the scope of materials for supporting the immunoliposome.
- Baculovirus stability in serum-free lyophilized and wet storage conditionsColandro, Michelle Elizabeth (Virginia Tech, 2013-09-10)The baculovirus expression vector system (BEVS) is an effective way to produce recombinant proteins for biopharmaceuticals. However baculovirus stocks are stored in subzero temperatures to maintain virus stability, and fetal bovine serum is commonly used in the storage solution. In an effort to lower transportation and storage costs, a storage formulation that can effectively store the baculovirus in above frozen temperatures without the use of FBS would be beneficial. In this study, DMSO, ethylene glycol, glycerol, sucrose, sorbitol, sucrose-phosphate, and sucrose-phosphate-glutamate were added to baculovirus stock at various concentrations to determine the most effective stabilizer for virus storage at 4°C. Of the seven additives studied, 1 M sorbitol most effectively preserved baculovirus stock over a period of 47 weeks stored in 4°C. Formulations that include sucrose, L-arginine, and Pluronic F68 were created to determine their effectiveness on virus stability in a freeze-dried state stored at room temperature. In a lyophilized state, 0.5 M sucrose maintained baculovirus stock stability after 5 weeks of storage. Lyophilized stocks not containing sucrose were no longer infective after 5 weeks.
- Characterization of protein microstructure by various chromatographic techniquesPathange, Lakshmi Prasad (Virginia Tech, 2007-02-28)Due to the rising health care costs and with the advent of biogenerics, there is a growing demand to develop new and reliable techniques to characterize proteins and biopharmaceuticals. In addition, characterization aids in understanding the intricate relationship between a protein's structure and its function. To address this challenge, two protein structural parameters, 1) amino acid surface area and 2) amino acid microstructure, were chosen to be investigated. Two chromatographic techniques, 1) ion exchange chromatography (IEC) and 2) immobilized metal affinity chromatography (IMAC), were used to characterize the above-mentioned protein structure parameters. The model protein chosen for our work is T4 lysozyme. The protein consists of 164 amino acids with molecular weight ~ 18 kD. SYBYL 7.1 software was used to generate in silico point mutants. Two categories of protein variants (point mutants) were generated using site-directed protein mutagenesis. The goal for generating point mutants was to obtain mutants that vary in the two structural parameters. The first category point mutants vary in the surface accessibility of a surface accessible histidine residue. The second category point mutants predominantly vary in protein net charge and the amino acid microstructure. In total, seventeen point mutants were generated: 1) category I consists of seven variants that vary predominantly in their histidine surface accessibility, and were obtained by replacing a charged amino acid residue at different locations on the surface of the protein molecule, and 2) category II consists of ten variants that vary in both net charge and charge distribution were obtained by replacing charged and neutral amino acid residues at different locations (different microenvironments) on the protein surface. PCR technique was used to generate the point mutants. Gene and protein sequencing were employed to confirm the veracity of point mutation. CD and Lysozyme activity assays were performed to determine whether or not the 3D structure of all the protein variants was intact. Zonal analysis was used to obtain the binding strength values of all seventeen variants in IMAC with copper as the immobilized metal ions, and gradient elution method was used to obtain the relative retention times (rRT) values of all the variants in IEC. The seven lysozyme variants generated in category I each contains one surface histidine residue. In IMAC, there is a correlation between the surface accessibility of the lone surface histidine and the protein's binding strength with R²⁺= 0.76. In IEC, the correlation between the protein's microstructure, which predominantly consists the surface accessibility of the histidine residue, and the protein's retention times was R²⁺= 0.95. However, there were few outlier variants (e.g. variant K83H) which did not follow the correlations. The variations presented by few outlier variants can be attributed to the presence of intramolecular bonds, which restrict the mobility of the amino acid side chains and subsequently hinder the specific interaction between the amino acid residue and chromatographic media. For category II variants, short and medium range charge perturbations around the sole histidine residue in T4 lysozyme were engineered within 15 Ã distance of histidine. There was a strong correlation (R²⁺ = 0.96) between the theoretical (DeltaDeltaGElec) values, calculated using simple Coulomb's law, and the experimental (DeltaDeltaGB) values, which were obtained by measuring the protein binding strength values using IMAC. Similar correlation (R²⁺= 0.93) was obtained between the change in net charge (-2 to +2 units) and the relative retention times in IEC. Similarly, there were few variants (e.g. S136K, R76D) that did not follow the trends. The deviations of the few outlier variants can be attributed to the presence of unique microstructure effects around the histidine residue. These microstructure effects were quantified in IMAC as (DeltaDeltaGMicro), and in IEC they were quantified by the change in rRT values. In summary, all seventeen variants had different binding strengths and rRT values indicating the variation in the protein structure around the histidine residue. Our work reveals that it is possible to capture the microstructural effects of a protein through the combination of protein molecular modeling and simple chromatographic experiments.
- Characterization of Value Added Proteins and Lipids form MicroalgaeKhili, Mouna (Virginia Tech, 2013-01-30)Microalgae have been so far identified as the major producers of organic matter through their photosynthetic activities. In the present work, Nannochloris sp. and Amphora sp., two marine microalgae, have been investigated for proteins and lipids production. Protein fraction was quantified using Bicinchoninic acid (BCA) assay. Protein content in Nannochloris sp. was 16.69 ±4.07 % of dry mass and in Amphora sp. it was 39.89 ±2.09 % of dry mass. Enzyme assays were conducted spectrophotometrically. Nannochloris sp. had malate dehydrogenase, peroxidase and catalase activities. Amphora sp. exhibited malate dehydrogenase, catalase and cytochrome C oxidase activities. These enzymes have several valuable applications in some metabolic pathways and as antioxidant nutrition additives. Besides, lipid extraction was conducted using methanol/ chloroform solvent extraction. Crude lipid extract was analyzed using gas chromatography-mass spectrometry. Lipid contents were 8.14 ±3.67 % in Nannochloris sp. and 10.48 ±1.26% on dry basis in Amphora sp., respectively. Nannochloris sp. fatty acids were composed of C16:0 and C18:0 that are valuable for biodiesel production, and É-3 C18:3, É-6 C18:2, É-6 C16:2 having great nutritional values. In Amphora sp., the fatty acids consisted of C14:0, C16:0 and C16:1 shown to be valuable for biodiesel production and É-3 C22:6 having high nutritional values. Furthermore, a single step conversion of microalgal oil to fatty acid methyl esters was carried out starting directly from lyophilized microalgae. This promising process, in situ transesterification, led to better yields of methyl esters as compared to conventional lipid extraction followed by separate transesterification.
- Continuous flash extraction of alcohols from fermentation brothTeye, Frederick David (Virginia Tech, 2009-02-04)A new method of in situ extraction of alcohols from fermentation broth was investigated. The extraction method exploited the latent advantages of the non-equilibrium phase interaction of the fluid system in the flash tank to effectively recover the alcohol. Carbon dioxide gas ranging from 4.2L/min to 12.6L/min was used to continuously strip 2 and 12% (v/v) ethanol solution in a fermentor with a recycle. Ethanol and water in the stripped gas was recovered by compressing and then flashing into a flash tank that was maintained at 5 to 70bar and 5 to 55oC where two immiscible phases comprising CO2-rich phase (top layer) and H2O-rich phase (bottom layer) were formed. The H2O-rich bottom layer was collected as the Bottoms. The CO2-rich phase was continuously throttled producing a condensate (Tops) as a result of the Joule-Thompson cooling effect. The total ethanol recovered from the extraction scheme was 46.0 to 80% for the fermentor containing 2% (v/v) ethanol and 57 to 89% for the fermentor containing 12% (v/v) ethanol. The concentration of ethanol in the Bottoms ranged from 8.0 to 14.9 %(v/v) for the extraction from the 2 %(v/v) ethanol solution and 40.0 to 53.8 %(v/v) for the 12% (v/v) fermentor ethanol extraction. The Bottoms concentration showed a fourfold increase compared to the feed. The ethanol concentration of the Tops were much higher with the highest at approx. 90% (v/v) ethanol, however the yields were extremely low. Compression work required ranged from 6.4 to 20.1 MJ/kg ethanol recovered from the gas stream in the case of 12% (v/v) ethanol in fermentor. The energy requirement for the 2% (v/v) extraction was 84MJ/kg recovered ethanol. The measured Joule-Thompson cooling effect for the extraction scheme was in the range of 10 to 20% the work of compressing the gas. The lowest measured throttle valve temperature was -47oC at the flash tank conditions of 70bar and 25oC. Optimization of the extraction scheme showed that increasing the temperature of the flash tank reduced the amount of ethanol recovered. Increasing the pressure of the flash tank increased the total ethanol recovered but beyond 45bar it appeared to reduce the yield. The 12.6L/min carbon dioxide flow rate favored the high pressure(70bar) extraction whiles 4.2L/min appeared to favor the low pressure(40bar) extraction. The studies showed that the extraction method could potentially be used to recover ethanol and other fermentation products.
- Design, Synthesis and Characterization of Heme-proteins: Developing Potential Catalysts for Bio-remediationShah, Kinjalkumar K. (Virginia Tech, 2004-12-16)The next generation of toxic chemicals and hazardous wastes from sophisticated chemical industries will demand the environmental agencies to employ biological methods over the conventional physical and chemical remediation methods. Over the past decade, natural metallo-enzymes have been identified to degrade some of the major chemical contaminants through electron transfer pathways. However, these natural enzymes are less stable in organic solvents and they are not effective for the degradation of toxic compounds such as polychlorinated biphenyls or dioxins. This thesis explores the use of protein design approaches to produce chemically and molecularly modified enzymes, which are highly stable, possess little substrate specificity, and have higher activity than the natural enzymes. The experiments presented in this thesis make use of solid phase synthesis and site-directed mutagenesis for the synthesis and production of these enzymes and popular chromatographic techniques for their purification. The partial characterization of these proteins revealed the essential structural features of these proteins, and their catalytic activity was demonstrated by the use of peroxidase assays.
- Development of Building Blocks - Thermostable Enzymes for Synthetic Pathway Biotransformation (SyPaB)Sun, Fangfang (Virginia Tech, 2012-04-25)Hydrogen production from abundant renewable biomass would decrease reliance on crude oils, achieve nearly zero net greenhouse gas emissions, create more jobs, and enhance national energy security. Cell-free synthetic pathway biotransformation (SyPaB) is the implementation of complicated chemical reaction by the in vitro assembly of numerous enzymes and coenzymes that microbes cannot do. One of the largest challenges is the high cost and instability of enzymes and cofactors. To overcome this obstacle, strong motivations have driven intensive efforts in discovering, engineering, and producing thermostable enzymes. In this project, ribose-5-phosphate isomerase (RpiB), one of the most important enzymes in the pentose phosphate pathway, was cloned from a thermophile Thermotoga maritima, and heterologously expressed in Escherichia coli, purified and characterized. High-purity RpiB was obtained by heat pretreatment through its optimization in buffer choice, buffer pH, as well as temperature and duration of pretreatment. This enzyme had the maximum activity at 80°C and pH 6.5-8.0. It had a half lifetime of 71 h at 60°C, resulting in its turn-over number of more than 2 x108 mol of product per mol of enzyme. Another two thermostable enzymes glucose-6-phosphate dehydrogenase (G6PDH) and diaphorase (DI) and their fusion proteins G6PDH-DI and DI-G6PDH were cloned from Geobacillus stearothermophilus, heterologouely expressed in E. coli and purified through its His-tag. The individual proteins G6PDH and DI have good thermostability and reactivity. However, the presence of DI in fusion proteins drastically decreased G6DPH activity. However, a mixture of G6PDH and a fusion protein G6PDH-DI not only restored G6PDH activity through the formation of heteromultimeric network but also facilitated substrate channeling between DI and G6PDH, especially at low enzyme concentrations. My researches would provide important building blocks for the on-going projects: high-yield hydrogen production through cell-free enzymatic pathways and electrical energy production through enzymatic fuel cells.
- Development of nanoparticle based nicotine vaccines for smoking cessationHu, Yun (Virginia Tech, 2015-06-15)Cigarette smoking is prevalent worldwide and has consistently been the top preventable cause of many serious diseases., which result in huge mortality, morbidity, and economic loss, in recent decades. In recent years, nicotine vaccines that can induce production of nicotine specific antibodies in human have emerged as a promising medicine to treat tobacco addiction. In the past decade, there have been numerous nicotine vaccine candidates evaluated in human clinical trials, including NicVaxNicVAX®, TA-NICTA-NIC®, Nic002NIC002®, NiccineNiccine®, and SEL-068SEL-068®. . However, traditional nicotine vaccine designs haves many disadvantages, including low immunogenicity, low specificity, difficulty in integration of molecular adjuvants, and short immune response persistence. To overcome the above limitations, in this study, various nanoparticle-based vaccine delivery systemsvaccine componentss have been developed and evaluated as potential delivery vehicles for vaccines against nicotine addiction. Firstly, a nicotine vaccine was synthesized by conjugating bovine serum albumin (BSA)-nicotine complex to the surface of nano-sized cationic liposome. Significantly higher anti-nicotine antibody titer was achieved in mice by liposome delivered nicotine vaccine compared with nicotine-BSA vaccine. Secondly, a novel nanoparticle (NP)-based delivery platform was constructed by incorporating a negatively charged nanohorn into cationic liposome to improve the stability of liposome and reduce nanoparticle flocculation. Subsequently, nicotine vaccine was constructed by conjugating nicotine-BSA complex to the surface of the nanohorn supported liposome (NsL). Marked improvement in stability in vitro and significant increase in titer of anti-nicotine antibodies were detected in nanohorn supported liposome ( NsL) delivered vaccine than liposome delivered vaccine. In addition, NsL nicotine vaccine exhibited good safety in mice after multiple injections. Thirdly, lipid- poly(lactic-co-glycolic acid) (PLGA) hybrid NPs were constructed as vaccine delivery system. due to the fact that nanohorn is not currently approved for clinical use, we substituted the nanohorn with poly(lactic-co-glycolic acid) (PLGA) nanoparticles and constructed PLGA-lipid hybrid nanoparticles. Preliminary results showed that PLGA-lipid hybrid NPs nanoparticles exhibited improved stability, better controlled release of antigens, as well as enhanced uptake by dendritic cell (DC). A lipid-PLGA hybrid NPnanoparticle was also developed that was structurally responsive to low pH challenge. The lipid shell of the hybrid nanoparticle was rapidly disintegrated under a low pH challenge, which resembles the acidic environment of endosomes in DCsdendritic cells. The hybrid NPs exhibited minimal antigen release in human serum at physiological pH, but a faster release of antigen from this NP compared to non-pH sensitive NPs was observed in DC. In the final study, hybrid NPnanoparticles with various cholesterol concentrations were constructed. Slower and more controlled release of antigens in both human serum and phosphate buffered saline were detected in nanoparticles with higher cholesterol content. However, nanoparticles containing higher cholesterol showed poorer stability due to increase fusion among NPnanoparticles. It was later found that PEGylation of NPs can effectively minimize fusion caused size increase after long term storage, leading to improved cellular uptake. The findings from this study on the nanohorn-lipids based nicotine vaccine as well as lipid-PLGA hybrid NPs may provide solid basis for future development of lipid-PLGA based nicotine vaccine.
- Development of subunit vaccines against porcine reproductive and respiratory syndrome virus (PRRSV)Hu, Jianzhong (Virginia Tech, 2012-08-06)Since emerging in Europe and the US, PRRS has spread globally and become the most significant infectious disease currently devastating the swine industry. In the US alone, the economic losses caused by this disease amount to more than 560 million US dollars every year. Modified-live PRRSV vaccines (MLV) are the most effective option currently available for the control of the disease. MLVs can confer solid protection against homologous re-infection and have significant effects in reducing viral shedding. But the vaccine efficacy varies upon heterologous challenge. None of the current vaccines are able to completely prevent respiratory infection, transplacental transmission, as well as pig-to-pig transmission of the virus. More importantly, the intrinsic risk of MLV vaccine to revert to virulent virus under farm conditions poses a great safety concern. The unsatisfactory efficacy and safety of current PRRSV vaccines drives the continuous efforts of developing a new generation of vaccines. The strategy we focus on for novel PRRSV vaccine development is subunit vaccine. The reasons for choosing this strategy are: 1) subunit vaccines only contain the immunogenic fragments of a pathogen. Administration of such pathogen fragments eliminates the risk of pathogens reverting back to their virulent form as in the case of modified live vaccines. 2) Subunit vaccines have advantages in terms of vaccine production since a well-defined pathogen fragment can more easily be produced consistently. To achieve of our goal of developing safe and efficacious subunit vaccines against PRRSV, three projects were completed. First, a scalable process for purification of PRRSV particles from cell culture was developed. This process produced purified viral particles for ELISA and cell-based assays used in vaccine development. Second, a plant-made oral subunit vaccine against PRRSV was developed. Administration of the plant-made vaccine, the vaccinated animals produced virus-specific serum and intestine mucosal antibodies with neutralization activity, as well as cellular immune responses with a preference of virus-specific IFN-γ production. Since neutralization antibodies and virus-specific IFN-γ response are the crucial factors contributing to protection against PRRSV infection, the plant-made oral subunit vaccine strategy is an attractive strategy for developing a new generation of the vaccine to control PRRS disease. Third, a chimeric protein consisting of the ectodomains of viral M and GP5 proteins was expressed and purified. The protein product showed a single band on a silver-stained gel and contained an endotoxin level of less than 10 EU/mg protein. In addition, the purified protein showed expected bioactivities. It was antigenic, could bind to a cellular receptor for the virus (heparan sulfate), and could block virus infection of susceptible cells. Therefore, the chimeric protein is a promising subunit vaccine candidate against PRRSV.
- Enzymatic Production of Cellulosic Hydrogen by Cell-free Synthetic Pathway Biotransformation(SyPaB)Ye, Xinhao (Virginia Tech, 2011-07-06)The goals of this research were 1) to produce hydrogen in high yields from cellulosic materials and water by synthetic pathway biotranformation (SyPaB), and 2) to increase the hydrogen production rate to a level comparable to microbe-based methods (~ 5 mmol H2/L/h). Cell-free SyPaB is a new biocatalysis technology that integrates a number of enzymatic reactions from four different metabolic pathways, e.g. glucan phosphorylation, pentose phosphate pathway, gluconeogenesis, and hydrogenase-catalyzed hydrogen production, so as to release 12 mol hydrogen per mol glucose equivalent. To ensure the artificial enzymatic pathway would work for hydrogen production, thermodynamic analysis was firstly conducted, suggesting that the artificial enzymatic pathway would spontaneously release hydrogen from cellulosic materials. A kinetic model was constructed to assess the rate-limited step(s) through metabolic control analysis. Three phosphorylases, i.e. α-glucan phosphorylase, cellobiose phosphorylase, and cellodextrin phosphorylase, were cloned from a thermophile Clostridium thermocellum, and heterologously expressed in Escherichia coli, purified and characterized in detail. Finally, up to 93% of hydrogen was produced from cellulosic materials (11.2 mol H2/mol glucose equivalent). A nearly 20-fold enhancement in hydrogen production rates has been achieved by increasing the rate-limiting hydrogenase concentration, increasing the substrate loading, and elevating the reaction temperature slightly from 30 to 32°C. The hydrogen production rates were higher than those of photobiological systems and comparable to the rates reported in dark fermentations. Now the hydrogen production is limited by the low stabilities and low activities of various phosphorylases. Therefore, non-biologically based methods have been applied to prolong the stability of α-glucan phosphorylases. The catalytic potential of cellodextrin phosphorylase has been improved to degrade insoluble cellulose by fusion of a carbohydrate-binding module (CBM) family 9 from Thermotoga maritima Xyn10A. The inactivation halftime of C. thermocellum cellobiose phosphorylase has been enhanced by three-fold at 70°C via a combination of rational design and directed evolution. The phosphorylases with improved properties would work as building blocks for SyPaB and enabled large-scale enzymatic production of cellulosic hydrogen.
- Examination of the Effects of a Sphingolipid-Enriched Lipid Fraction from Wheat Gluten on the Incidence of Diabetes in BBdp RatsShi, Wenjuan (Virginia Tech, 2004-01-08)This study was designed to examine if a sphingolipid-enriched lipid fraction from wheat gluten could affect the incidence of type I diabetes in BioBreeding diabetes prone (BBdp) rats. Wheat gluten was extracted with a chloroform-methanol (CM) mixture to isolate most of the lipids. Isolated lipids were subjected to silica gel column chromatography and saponification to remove most of neutral lipids and phospholipids, leaving behind a lipid fraction enriched in sphingolipids. This sphingolipid-enriched lipid fraction was used in a BBdp rat feeding study. BBdp rats were fed with one of five diets from weaning at 23 days of age until 125 days of age: a hydrolyzed casein based diet (HC), a NTP-2000 standard rodent diet (NTP-2000), a wheat gluten based diet (WG), a sphingolipid-free wheat gluten based diet (WGSLF), and a hydrolyzed casein plus sphingolipid-enriched lipid fraction diet (HC+SL). The yield of sphingolipid-enriched lipid fraction was about 0.62% of wheat gluten. The content of glycosylceramide in sphingolipid-enriched lipid fraction was increased more than five fold compared to that in total isolated lipids. Rats fed the NTP-2000 diet had the highest incidence of diabetes; while rats on the HC diet had the lowest diabetes incidence. There was no significant difference with regard to the onset age of diabetes among rats in the five diet groups. The addition of sphingolipid-enriched fraction to the HC diet caused a significant increase in the incidence of diabetes in BBdp rats in the first 80 days of the study. However, the ultimate diabetes incidence at day 125 was not changed. The removal of lipids from wheat gluten did not change the diabetes incidence in BBdp rats at any stages of the feeding study. These findings suggest that the sphingolipid-enriched fraction from wheat gluten acted as a possible promoter but not as a trigger of the development of type I diabetes in BBdp rats. There must be something that remains in wheat gluten after chloroform-methanol extraction that serves as a trigger for type I diabetes in these rodents. Type I diabetes in this animal model for the human disease seems to be caused by multiple factors, most likely, by the interaction of sphingolipids and some other unknown substances in wheat gluten.
- Expression of recombinant porcine preprorelaxin in Nicotiana tabacumBuswell, Walter Scott (Virginia Tech, 2006-05-10)Relaxin is a small peptide hormone that has demonstrated potential therapeutic actions for cardiovascular disease and fibrosis. Additionally, relaxin has demonstrated the ability to protect the heart from injuries caused by ischemia and reperfusion, promote the healing of ischemic ulcers, and counteract allergic responses. The objective of this research was to express fully processed porcine relaxin in transgenic tobacco plants, as an alternative to current methods of producing relaxin. Two recombinant relaxin genes were constructed that contained the patatin signal peptide cDNA fused in frame to prorelaxin cDNA, which was codon-optimized for expression in Nicotiana tabacum, under the control of either the "super" promoter or the dual enhanced cauliflower mosaic virus 35S promoter. Eighteen transgenic tobacco plants were generated that were transformed with the above recombinant genes. Preprorelaxin, mRNA was detected in 12 of the transgenic plants. Fully processed relaxin protein was not found in any tobacco plants that had demonstrated gene expression by northern blot analysis. Preprorelaxin was only identified in extracts from transgenic plants that contained the insoluble protein fraction, as determined by western blot analysis. Additionally, an increased yield of preprorelaxin was identified after incubation of tobacco leaves in an ubiquitin inhibitor.
- Facile protein and amino acid substitution reactions and their characterization using thermal, mechanical and optical techniquesBudhavaram, Naresh Kumar (Virginia Tech, 2010-11-01)The work focused on addressing four main objectives. The first objective was to quantify protein and amino acid substitution reactions. Michael addition reactions were used to modify the amino acids and protein. Amino acids alanine, cysteine, and lysine, and protein ovalbumin (OA) were substituted with different concentrations of ethyl vinyl sulfone (EVS). The substituted products were analyzed using Raman spectroscopy and UV-spectroscopy based ninhydrin assay. In case of alanine, Raman and UV results correlated with each other. With cysteine at lower EVS substitutions amine on the main chain was the preferred site while the substitution shifted to thiols at higher substitutions. This could only be discerned using Raman spectroscopy. Lysine has amines on the main chain and side chain while main chain amine was the most reactive site at lower concentrations of EVS while at higher concentrations side chain amines were also substituted. This information could be discerned using Raman spectroscopy only and not UV spectroscopy. In case of protein as observed by Raman and UV spectroscopy the reaction continued at higher concentrations of EVS indicating the participation of glutamine and asparagines at higher substitutions. However, the reaction considerably slowed down at higher EVS substitutions. The second objective of the study was to decrease the glass transition temperature (Tg) of OA through internal plasticization and also study the effects of the substituents on the thermal stability of OA. The hypothesis was by covalently attaching substituents to OA, number of hydrogen bonds can be reduced while increasing the free volume and this would reduce Tg. EVS, acrylic acid (AA), butadiene sulfone (BS) and maleimide (MA) were the four groups used. EVS was the most efficient plasticizer of all the four substituents. The Tg decreased with the increasing concentration of EVS until all of the reactive of groups on OA were used up. Tg decreased slightly with AA and BS while no change was observed with MA. However, the substituents showed exact opposite trend in thermal stability as measured using thermogravimetric analysis (TGA). The thermal stability of MA substituted OA was the highest and that of EVS substituted OA was least. FT-IR spectroscopy results indicated that all four substituents caused structural changes in OA. This implied that there were intermolecular interactions between substituted protein chains in case of AA, BS, and MA. This caused an increase in the thermal stability. EVS on the other hand is a linear chain monomer with a hydrophobic end group and hence could not participate in the intermolecular interactions and hence caused a decrease in Tg. As mentioned above the limitation to this technique is the number of available reactive groups on the protein. However, we successfully demonstrated the feasibility of this method in decreasing Tg of protein. The third objective was to create hydrogels by crosslinking OA with divinyl sulfone (DVS). Protein hydrogels due to their biocompatible nature find applications in drug delivery and tissue engineering. For tissue engineering applications the hydrogels need to be mechanically stable. In this study the protein was substituted with EVS or AA and then crosslinked with DVS. The swelling ratio was measured as a function of pH. All the hydrogels showed the same trend and swelled the least at pH 4.5 which is the isoelectric point of the protein. At basic pH conditions EVS substituted hydrogels swelled the most while AA substituted hydrogels showed least swelling. The static and dynamic moduli of the hydrogels were determined using tensile tester and rheometer respectively. The static modulus values were three times the dynamic modulus. The modulus of the control which is crosslinked OA was least and that of AA substituted OA was highest. The stress relaxation test also showed similar results in which AA substituted OA relaxed the most and the control relaxed the least. FT-IR of the dry hydrogels showed that the amount of hydrogen bonding increased with AA substitution. The hydrophilic AA end groups interacted with each other forming hydrogen bonds. These hydrogen bonds served as additional crosslinks there by increasing the modulus of the hydrogels. EVS on the other hand was incapable of interactions due to the lack of hydrophilic end groups. We were successfully able to create protein hydrogels and control the swelling and mechanical properties by varying the amount of substituted group. The final objective of the study was to create and characterize microstructures from substituted alanine and lysine. Alanine and lysine were substituted with different concentrations of EVS. Bars and fibers were observed for alanine at moderate substitutions while at higher concentrations random structures were observed using scanning electron microscopy (SEM). Lysine formed tubes at moderate EVS substitutions and rosettes at high concentrations of EVS as evidenced by SEM. FT-IR results suggested that instead of carbonyl one of sulfonyl bonded to the available amine in modified amino acids. And only in this case fibers, tubes and rosettes were observed. X-ray diffraction (XRD) results supported this observation. Using these results we hypothesized that the self assembled structures very much depended on the amount of EVS present in the substituted product and sulfonyl forming β-sheet analogs with amine.
- FITSelect: An Invention to Select Microbial Strains Maximizing Product Formation from a Single Culture Without High-Throughput ScreeningZhou, Rui (Virginia Tech, 2011-08-08)In metabolic engineering of prokaryotes, combinatorial approaches have developed recently that induce random genetic perturbations to achieve a desired cell phenotype. A screening strategy follows the randomized genetic manipulations to select strain(s) with the more optimal phenotype of interest. This screening strategy is often divided into two categories: (i) a growth competition assay and (ii) selection by high-throughput screening. The growth competition assay involves culturing strains together. The strain with the highest growth rate will ultimately dominate the culture. This strategy is ideal for selecting strain with cellular fitness (e.g., solvent tolerance), but it does not work for selecting a strain that can over-produce a product (e.g., an amino acid). For the case of selecting highly productive phenotypes, high-throughput screening is used. This method analyzes strains individually and is costly and time-consuming. In this research, a synthetic genetic circuit was developed to select highly productive phenotypes using a growth competition assay rather than high-throughput screening. This novel system is called Feed-back Inhibition of Transcription for Growth Selection (FITSelect), and it uses a natural feedback inhibition mechanism in the L-arginine production pathway to select strains (transformed with a random genomic library) that can over-produce L-arginine in E. coli DH10B. With FITSelect, the cell can thrive in the growth competition assay when L-arginine is over-produced (i.e., growth is tied to L-arginine production). Cell death or reduced growth results if L-arginine is not over-produced by the cell. This system was created by including an L-arginine concentration responsive argF promoter to control a ccdB cell death gene in the FITSelect system. The effects of ccdB were modulated by the antidote ccdA gene under control of an L-tryptophan responsive trp promoter. Several insights and construction strategies were required to build a system that ties the growth rate of the cell to L-arginine concentrations.
- Fractional Catalytic Pyrolysis Technology for the Production of Upgraded Bio-oil using FCC CatalystMante, Nii Ofei Daku (Virginia Tech, 2011-12-19)Catalytic pyrolysis technology is one of the thermochemical platforms used to produce high quality bio-oil and chemicals from biomass feedstocks. In the catalytic pyrolysis process, the biomass is rapidly heated under inert atmosphere in the presence of an acid catalyst or zeolite to promote deoxygenation and cracking of the primary vapors into hydrocarbons and small oxygenates. This dissertation examines the utilization of conventional fluid catalytic cracking (FCC) catalyst in the fractional catalytic pyrolysis of hybrid poplar wood. The influence of Y-zeolite content, steam treatment, addition of ZSM-5 additive, process conditions (temperature, weight hourly space velocity (WHSV) and vapor residence time) and recycling of the non-condensable gases (NCG) on the product distribution and the quality of the bio-oil were investigated. The first part of the study demonstrates the influence of catalytic property of FCC catalyst on the product distribution and quality of the bio-oil. It was found that FCC catalyst with higher Y-zeolite content produces higher coke yield and lower organic liquid fraction (OLF). Conversely, FCC catalyst with lower Y-zeolite content results in lower coke yield and higher OLF. The results showed that higher Y-zeolite content extensively cracks dehydrated products from cellulose decomposition and demethoxylates phenolic compounds from lignin degradation. The Y-zeolite promoted both deoxygenation and coke forming reactions due to its high catalytic activity and large pore size. Higher Y-zeolite content increased the quality of the bio-oil with respect to higher heating value (HHV), pH, density, and viscosity. The steam treatment at 732 oC and 788 oC decreased the total BET surface area of the FCC catalyst. The findings suggest that steam treatment reduces the coking tendency of the FCC catalyst and enhances the yield of the OLF. Analysis of the bio-oils showed that the steamed FCC catalyst produces bio-oil with lower viscosity and density. Gas chromatography and 13C-NMR spectrometry suggest that steam treatment affect the catalyst selectivity in the formation of CO, CO2, H2, CH4, C2-C5 hydrocarbons and aromatic hydrocarbons. The addition of ZSM-5 additive to the FCC catalyst was found to alter the characteristic/functionality of the catalytic medium. The product slate showed decrease in coke yield and increase in OLF with increase in ZSM-5 additive. The FCC/ZSM-5 additive hybrid catalysts produced bio-oils with relatively lower viscosity and higher pH value. The formation of CO2, CH4, and H2 decreased whilst C5 and aromatic hydrocarbons increased with increase in ZSM-5 additive level. The second part of the work assesses the effect of operating conditions on the catalytic pyrolysis process. The response surface methodology study showed reaction temperature to be the most influential statistically significant independent variable on char/coke yield, concentration of non-condensable gases, carbon content, oxygen content, pH and viscosity of the bio-oils. The WHSV was the most important statistically significant independent variable that affects the yield of organic liquid and water. Adequate and statistically significant models were generated for the prediction of the responses with the exception of viscosity. Recycling of the NCG in the process was found to potentially increase the liquid yield and decrease char/coke yield. The experiments with the model fluidizing gases showed that CO/N2, CO2/N2, CO/CO2/N2 and H2/N2 increase the liquid yield and CO2/N2 decrease char/coke yield. The results showed that recycling of NCG increases the higher heating value and the pH of the bio-oil as well as decreases the viscosity and density. The concept of recycling the NCG in the catalytic cracking of biomass vapors with FCC catalyst improved the overall process. The evaluation of the reactivity of conventional FCC catalyst towards bio-based molecules provide essential direction for FCC catalyst formulation and design for the production of high quality bio-oils from catalytic pyrolysis of biomass.
- Investigation of Poultry Litter Bochar as a Potential Electrode for Direct Carbon Fuel CellsAbdellaoui, Hamza (Virginia Tech, 2013-01-25)Direct carbon fuel cell (DCFC) is a high temperature fuel cell (around 700 "C) that produces electrical energy from the direct conversion of the chemical energy of carbon. DCFC has a higher achievable efficiency of 80% compared to other fuel cells and the corresponding CO2 emission is very low compared to conventional coal-burning power plants. Moreover, a DCFC can use diversified fuel resources even waste material, which is advantageous compared to other types of fuel cells which are limited to specific fuels. DCFCs are still under development due to a number of fundamental and technological challenges such as the efficiency of carbon fuels and the effect of impurities on the performance and lifetime of the DCFC. These are key factors for the development and commercialization of these devices. In this study, three biochars obtained from the pyrolysis of poultry litters (PL) collected from Tunisian and US farmers, were characterized to see whether they can be potential anode fuels for DCFC or not. PL biochars have low fixed carbon contents (19-35 wt%) and high ash contents (32.5-63 wt%). These ashes contain around 40 wt% catalytic oxides for carbon oxidation reaction, however, these oxides have very low electrical conductivities, which resulted in the very low (negligible) electrical conductivity of the PL biochars (7.7x10-9-70.56x10-9 S/cm) at room temperature. Moreover, the high ash contents resulted in low surface areas (3.34-4.2 m"/g). These findings disqualified PL biochar from being a potential anode fuel for DCFCs. Chemical demineralization in the sequence HF/HCl followed by carbonization at 950" C of the PL biochars will result in higher fixed carbon content, higher surface area, and higher electrical conductivities. Moreover, the treated PL biochars would contain a potential catalyst (Calcium in the form of CaF2) for carbon oxidation. All these criteria would qualify the treated PL biochars to be potential fuels for DCFC.
- Lysozyme Separation from Tobacco Extract by Aqueous Two-Phase ExtractionBalasubramaniam, Deepa (Virginia Tech, 2003-02-05)Tobacco has long been considered as a host to produce large quantities of high-valued recombinant proteins. However, dealing with large quantities of biomass with a dilute concentration of product is a challenge for down-stream processing. Aqueous two-phase extraction (ATPE) has been used in purifying proteins from various sources. It is a protein-friendly process and can be scaled up easily. ATPE was studied for its applicability to recombinant protein purification from tobacco using egg white lysozyme as the model protein. Separate experiments with polyethyleneglycol(PEG)/salt/tobacco extract, and PEG/salt/lysozyme were carried out to determine the partition behavior of tobacco protein and lysozyme, respectively. Two level fractional factorial designs were used to study the effects of factors such as PEG molecular weight, PEG concentration, the concentration of phase forming salt, sodium chloride concentration, and pH on protein partitioning. The results showed that PEG/sodium sulfate system was most suitable for lysozyme purification. Detailed experiments were conducted by spiking lysozyme into the tobacco extract. The conditions with highest selectivity of lysozyme over native tobacco protein were determined using a response surface design. The purification factor was further improved by decreasing the phase ratio along the tie line corresponding to the phase compositions with the highest selectivity. Under selected conditions the lysozyme yield was predicted to be 87% with a purification factor of 4 and concentration factor of 14. The binodial curve and tie line corresponding to the optimal condition for lysozyme recovery for the PEG 3400/sodium sulfate system were developed. The selectivity at the optimal condition was experimentally determined to be 47 with a lysozyme yield of 79.6 % with a purification factor of 10 and a concentration factor of 20. From this study, ATPE was shown to be suitable for initial protein recovery and partial purification from transgenic tobacco.
- Microbubble fermentation of recombinant Pichia pastoris for human serum albumin productionZhang, Wei (Virginia Tech, 2003-05-20)The high cell density fermentation of recombinant Pichia pastoris for human serum albumin (HSA) production is a high oxygen demand process. The oxygen demand is usually met by increased agitation rate and use of oxygen-enriched air. Microbubble fermentation however can supply adequate oxygen to the microorganisms at relatively low agitation rates because of improved mass transfer of the microbubbles used for the sparging. Conventionally sparged fermentations were conducted for the production of HSA using P. pastoris at agitation rates of 350, 500, and 750 rpm, and were compared to MBD sparged fermentation at 150, 350, and 500 rpm agitation rates. The MBD improved the volumetric oxygen transfer coefficient (kLa) and subsequently increased the cell mass and protein production compared to conventional fermentation. Cell production in MBD fermentation at 350 rpm was 4.6 times higher than that in conventional fermentation at 350 rpm, but similar to that in the conventional 750 rpm. Maximum cell mass productivity in the conventional 350 rpm was only 0.37 g / (L·h), while the maximum value in MBD 350 rpm was 2.0 g / (L·h), which was similar to 2.2 g / (L·h) in the conventional 750 rpm. Biomass yield on glycerol Ys (g cell/ g glycerol) was 0.334 g / g in the conventional 350 rpm, 0.431 g / g in MBD 350 rpm and 0.438 g / g in the conventional 750 rpm. Protein production in MBD 350 rpm was 7.3 times higher than that in the conventional 350 rpm, but similar to the conventional 750 rpm. Maximum protein productivity in the conventional 350 rpm was 0.37 mg / (L·h), 2.8 mg / (L·h) in MBD 350 rpm, and 3.3 mg / (L·h) in the conventional 750 rpm. Protein yield on methanol Yp (mg protein / g methanol) was 1.57 mg /g in the conventional 350 rpm, 5.02 in MBD 350 rpm, and 5.21 in the conventional 750 rpm. The volumetric oxygen transfer coefficient kLa was 1011.9 h-1 in MBD 350 rpm, which was 6.1 times higher than that in the conventional 350 rpm (164.9 h-1) but was similar to the conventional 750 rpm (1098 h-1). Therefore, MBD fermentation results at low agitation of 350 rpm were similar to those in the conventional fermentation at high agitation of 750 rpm. There was considerable improvement in oxygen transfer to the microorganism using MBD sparging relative to the conventional sparging. Conventional fermentations were conducted both in a Biostat Q fermenter (small) at 500 rpm, 750 rpm, and 1000 rpm, and in a Bioflo III fermenter (large) at 350 rpm, 500 rpm, and 750 rpm. At the same agitation rate of 500 rpm, cell production in the large reactor was 3.8 times higher than that in the small one, and no detectable protein was produced in the small reactor at 500 rpm. At the same agitation rate of 750 rpm, both cell production and protein production in the large reactor were 4.6 times higher than the small reactor. Thus, the Bioflo III fermenter showed higher oxygen transfer efficiency than the Biostat Q fermenter, because of the more efficient aeration design of the Bioflo III fermenter.
- Microwave-based Pretreatment, Pathogen Fate and Microbial Population in a Dairy Manure Treatment SystemJin, Ying (Virginia Tech, 2010-11-29)Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while one of the limitations to struvite precipitation is the availability of orthophosphate. The aim of this work was to study the use of microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H₂SO₄, or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and side reactions. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium reacts with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147°C and 25.3 min for methane production, and 135°C and 26 min for orthophosphate release, respectively. Applying manure or slurry directly to the land can contribute to pathogen contamination of land, freshwater and groundwater. Thus it is important to study the fate of pathogens in diary manure anaerobic digestion systems. The goal of the project was to establish a molecular based quantitative method for pathogen identification and quantification, compare the molecular based method with culture based method and study pathogen fate in dairy manure and different anaerobic digesters. Result showed that molecular based method detected more E.coli than the culture based method with less variability. Thermophilic anaerobic digestion can achieve more than 95% pathogen removal rate while mesophilic anaerobic digester had increased E.coli number than fresh manure, indicating temperature is a key factor for pathogen removal. In general, the overall goal of the study is to develop an integrated dairy manure treatment system. The microwave based pretreatment enhanced the subsequent biogas production and struvite precipitation, and the molecular tool based method provided a more precise and faster way to study the pathogen fate in various anaerobic digestions.