Center for Human-Computer Interaction
Permanent URI for this community
The Center for Human-Computer Interaction is a transdisciplinary community of scholars. Our mission is to advance HCI research and education through intellectual and creative leadership and to advocate for a human-centered approach to technology, both at Virginia Tech and globally.
Browse
Browsing Center for Human-Computer Interaction by Issue Date
Now showing 1 - 20 of 31
Results Per Page
Sort Options
- Learning When Less is More: “Bootstrapping” Undergraduate Programmers as Coordination DesignersLin, Strong; Tatar, Deborah; Harrison, Steve; Roschelle, Jeremy; Patton, Charles (Computer Professionals for Social Responsibility, 2006)In this paper, we describe an undergraduate computer science class in the United States that we started with the intention of creating a participatory design experience to create distributed mobile collaborative technologies for education. The case highlights the ways in which programmer understanding of an innovative new technology can depend on understanding the context of use. The students were to use Tuple-spaces, a language for coordination. However, it soon became clear that while the coordination of machines may be thought of as a computer science problem, the students could not understand the technical system without richer models of how, why, or when coordination is desirable. We were in the ironic position of teaching human coordination at the same time as describing the technical properties of a system to support it. To “bootstrap” the learning process, we asked the students to draw on their own coordination expertise by implementing familiar coordinative games. We propose games as an addition to the PD toolkit when implementers need help in stepping outside their everyday mindset.
- Using Place as Provocation: In Situ Collaborative Narrative ConstructionSchaefer, Matthew; Tatar, Deborah; Harrison, Steve; Crandell, Alli (Research Center for Educational Technology, 2008)This paper describes a unique model for mobile, collaborative learning embodied in the use of a new software tool called PlaceMark©. The model is overtly intended to help learners reflect on their relationship to particular places, and the relationship between their own experience and other people’s experiences of those spaces. PlaceMark does this not by telling people what a place is, but by instead asking them, as they reflect and write about their own experiences of place. This paper describes how PlaceMark facilitates distributed control in coordinated classroom activities. We believe that the stance to knowledge embodied in the system encourages student responsibility within the learning process and helps teach about multiplicity of perspective in a visceral way. Additionally, as cell phones and other technologies become part of ordinary life, it is increasingly important that children (and all of us) come to have a deeper consciousness of place. This work reports on a pilot study of the software conducted with middle school students, and provides an analysis of the study activity.
- 3D Sketching and Flexible Input for Surface Design: A Case StudyLeal, Anamary; Bowman, Douglas A. (Brazilian Computing Society (SBC), 2014)Designing three-dimensional (3D) surfaces is difficult in both the physical world and in 3D modeling software, requiring background knowledge and skill. The goal of this work is to make 3D surface design easier and more accessible through natural and tangible 3D interaction, taking advantage of users' proprioceptive senses to help them understand 3D position, orientation, size, and shape. We hypothesize that flexible input based on fabric may be suitable for 3D surface design, because it can be molded and folded into a desired shape, and because it can be used as a dynamic flexible brush for 3D sketching. Fabric3D, an interactive surface design system based on 3D sketching with flexible input, explored this hypothesis. Through a longitudinal five-part study in which three domain experts used Fabric3D, we gained insight into the use of flexible input and 3D sketching for surface design in various domains.
- Technology helps students transcend part-whole conceptsNorton, Anderson H. III; Wilkins, Jesse L. M.; Evans, Michael A.; Deater-Deckard, Kirby; Balci, Osman; Chang, Mido (2014-02)How would your students make sense of the fraction 5/7? Would they interpret it as 5 parts out of 7 equal parts? Could they also understand it as a piece that is 5 times as large as 1/7? The former interpretation aligns with part-whole conceptions, whereas the latter aligns with partitive conceptions. Steffe and Olive (2010) have made such distinctions in students’ fractional knowledge to explain why students experience difficulties with fractions and to help students overcome those difficulties. (For summaries of this work, see Norton and McCloskey 2008 and 2009.) We introduce an educational video game (application, or app) designed to promote students’ development of partitive understanding while demonstrating the critical need to promote that development. The app includes essential game features of immediate feedback, incentives, and summary information for refl ection and discussion (Evans et al. 2013).
- OPERAcraft: Blurring the Lines between Real and VirtualBukvic, Ivica Ico; Cahoon, Cody; Wyatt, Ariana; Cowden, Tracy; Dredger, Katie (University of Michigan, 2014-09)In the following paper we present an innovative approach to coupling gaming, telematics, machinima, and opera to produce a hybrid performance art form and an arts+technology education platform. To achieve this, we leverage a custom Minecraft video game and sandbox mod and pd-l2ork real-time digital signal processing environment. The result is a malleable telematic-ready platform capable of supporting a broad array of artistic forms beyond its original intent, including theatre, cinema, as well as machinima and other experimental genres.
- Aegis Audio Engine: Integrating a Real-Time Analog Signal Processing, Pattern Recognition, and a Procedural Soundtrack in a Live Twelve-Perfomer Spectacle With Crowd ParticipationBukvic, Ivica Ico; Matthews, Michael (Georgia Institute of Technology, 2015-07)In the following paper we present Aegis: a procedural networked soundtrack engine driven by real-time analog signal analysis and pattern recognition. Aegis was originally conceived as part of Drummer Game, a game-performancespectacle hybrid research project focusing on the depiction of a battle portrayed using terracotta soldiers. In it, each of the twelve cohorts—divided into two armies of six—are led by a drummer-performer who issues commands by accurately drumming precomposed rhythmic patterns on an original Chinese war drum. The ensuing spectacle is envisioned to also accommodate large audience participation whose input determines the morale of the two armies. An analog signal analyzer utilizes efficient pattern recognition to decipher the desired action and feed it both into the game and the soundtrack engine. The soundtrack engine then uses this action, as well as messages from the gaming simulation, to determine the most appropriate soundtrack parameters while ensuring minimal repetition and seamless transitions between various clips that account for tempo, meter, and key changes. The ensuing simulation offers a comprehensive system for pattern-driven input, holistic situation assessment, and a soundtrack engine that aims to generate a seamless musical experience without having to resort to cross-fades and other simplistic transitions that tend to disrupt a soundtrack’s continuity.
- Introducing D⁴: An Interactive 3D Audio Rapid Prototyping and Transportable Rendering Environment Using High Density Loudspeaker ArraysBukvic, Ivica Ico (University of Michigan, 2016)With a growing number of multimedia venues and research spaces equipped with High Density Loudspeaker Arrays, there is a need for an integrative 3D audio spatialization system that offers both a scalable spatialization algorithm and a battery of supporting rapid prototyping tools for time-based editing, rendering, and interactive low-latency manipulation. D⁴ library aims to assist this newfound whitespace by introducing a Layer Based Amplitude Panning algorithm and a collection of rapid prototyping tools for the 3D time-based audio spatialization and data sonification. The ensuing ecosystem is designed to be transportable and scalable. It supports a broad array of configurations, from monophonic to as many as hardware can handle. D⁴’s rapid prototyping tools leverage oculocentric strategies to importing and spatially rendering multidimensional data and offer an array of new approaches to time-based spatial parameter manipulation and representation. The following paper presents unique affordances of D⁴’s rapid prototyping tools.
- Cinemacraft: Immersive Live Machinima as an Empathetic Musical Storytelling PlatformNarayanan, Siddhart; Bukvic, Ivica Ico (University of Michigan, 2016)In the following paper we present Cinemacraft, a technology-mediated immersive machinima platform for collaborative performance and musical human-computer interaction. To achieve this, Cinemacraft innovates upon a reverse-engineered version of Minecraft, offering a unique collection of live machinima production tools and a newly introduced Kinect HD module that allows for embodied interaction, including posture, arm movement, facial expressions, and a lip syncing based on captured voice input. The result is a malleable and accessible sensory fusion platform capable of delivering compelling live immersive and empathetic musical storytelling that through the use of low fidelity avatars also successfully sidesteps the uncanny valley.
- NIMEhub: Toward a Repository for Sharing and Archiving Instrument DesignsMcPherson, Andrew P.; Berdahl, Edgar; Lyons, Michael J.; Jensensius, Alexander Refsum; Bukvic, Ivica Ico; Knudson, Arve (ACM, 2016-07)This workshop will explore the potential creation of a community database of digital musical instrument (DMI) designs. In other research communities, reproducible research practices are common, including open-source software, open datasets, established evaluation methods and community standards for research practice. NIME could benefit from similar practices, both to share ideas amongst geographically distant researchers and to maintain instrument designs after their first performances. However, the needs of NIME are different from other communities on account of NIME's reliance on custom hardware designs and the interdependence of technology and arts practice. This half-day workshop will promote a community discussion of the potential benefits and challenges of a DMI repository and plan concrete steps toward its implementation.
- 3D Time-Based Aural Data Representation Using D⁴ Library’s Layer Based Amplitude Panning AlgorithmBukvic, Ivica Ico (Georgia Institute of Technology, 2016-07)The following paper introduces a new Layer Based Amplitude Panning algorithm and supporting D⁴ library of rapid prototyping tools for the 3D time-based data representation using sound. The algorithm is designed to scale and support a broad array of configurations, with particular focus on High Density Loudspeaker Arrays (HDLAs). The supporting rapid prototyping tools are designed to leverage oculocentric strategies to importing, editing, and rendering data, offering an array of innovative approaches to spatial data editing and representation through the use of sound in HDLA scenarios. The ensuing D⁴ ecosystem aims to address the shortcomings of existing approaches to spatial aural representation of data, offers unique opportunities for furthering research in the spatial data audification and sonification, as well as transportable and scalable spatial media creation and production.
- Bare-hand volume cracker for raw volume data analysisSocha, John J.; Laha, Bireswar; Bowman, Douglas A. (2016-09-28)Analysis of raw volume data generated from different scanning technologies faces a variety of challenges, related to search, pattern recognition, spatial understanding, quantitative estimation, and shape description. In a previous study, we found that the volume cracker (VC) 3D interaction (3DI) technique mitigated some of these problems, but this result was from a tethered glove-based system with users analyzing simulated data. Here, we redesigned the VC by using untethered bare-hand interaction with real volume datasets, with a broader aim of adoption of this technique in research labs. We developed symmetric and asymmetric interfaces for the bare-hand VC (BHVC) through design iterations with a biomechanics scientist. We evaluated our asymmetric BHVC technique against standard 2D and widely used 3DI techniques with experts analyzing scanned beetle datasets. We found that our BHVC design significantly outperformed the other two techniques. This study contributes a practical 3DI design for scientists, documents lessons learned while redesigning for bare-hand trackers and provides evidence suggesting that 3DI could improve volume data analysis for a variety of visual analysis tasks. Our contribution is in the realm of 3D user interfaces tightly integrated with visualization for improving the effectiveness of visual analysis of volume datasets. Based on our experience, we also provide some insights into hardware-agnostic principles for design of effective interaction techniques.
- Relative Effects of Real-world and Virtual-World Latency on an Augmented Reality Training Task: An AR Simulation ExperimentNabiyouni, Mahdi; Scirbo, Siroberto; Bowman, Douglas A.; Höllerer, Tobias (Frontiers Media, 2017-01-30)In augmented reality (AR), virtual objects and information are overlaid onto the user’s view of the physical world and can appear to become part of the real-world. Accurate registration of virtual objects is a key requirement for an effective and natural AR system, but misregistration can break the illusion of virtual objects being part of the real-world and disrupt immersion. End-to-end system latency severely impacts the quality of AR registration. In this research, we present a controlled study that aims at a deeper understanding of the effects of latency on virtual and real-world imagery and its influences on task performance in an AR training task. We utilize an AR simulation approach, in which an outdoor AR training task is simulated in a high-fidelity virtual reality (VR) system. The real and augmented portions of the AR training scenarios are simulated in VR, affording us detailed control over a variety of immersion parameters and the ability to explore the effects of different types of simulated latency. We utilized a representative task inspired by outdoor AR military training systems to compare various AR system configurations, including optical see-through and video see-through setups with both matched and unmatched levels of real and virtual objects latency. Our findings indicate that users are able to perform significantly better when virtual and real-world latencies are matched (as in the case of simulated video see-through AR with perfect augmentation-to-real-world registration). Unequal levels of latency led to reduction in performance, even when overall latency levels were lower compared to the matched case. The relative results hold up with increased overall latency.
- L2OrkMote: Reimagining a Low-Cost Wearable Controller for a Live Gesture-Centric Music PerformanceTsoukalas, Kyriakos D.; Kubalak, Joseph R.; Bukvic, Ivica Ico (ACM, 2018-06)Laptop orchestras create music, although digitally produced, in a collaborative live performance not unlike a traditional orchestra. The recent increase in interest and investment in this style of music creation has paved the way for novel methods for musicians to create and interact with music. To this end, a number of nontraditional instruments have been constructed that enable musicians to control sound production beyond pitch and volume, integrating filtering, musical effects, etc. Wii Remotes (WiiMotes) have seen heavy use in maker communities, including laptop orchestras, for their robust sensor array and low cost. The placement of sensors and the form factor of the device itself are suited for video games, not necessarily live music creation. In this paper, the authors present a new controller design, based on the WiiMote hardware platform, to address usability in gesture-centric music performance. Based on the pilot-study data, the new controller offers unrestricted two-hand gesture production, smaller footprint, and lower muscle strain.
- Introducing a K-12 Mechatronic NIME KitTsoukalas, Kyriakos D.; Bukvic, Ivica Ico (ACM, 2018-06)The following paper introduces a new mechatronic NIME kit that uses new additions to the Pd-L2Ork visual programing environment and its K-12 learning module. It is designed to facilitate the creation of simple mechatronics systems for physical sound production in K- 12 and production scenarios. The new set of objects builds on the existing support for the Raspberry Pi platform to also include the use of electric actuators via the microcomputer’s GPIO system. Moreover, we discuss implications of the newly introduced kit in the creative and K-12 education scenarios by sharing observations from a series of pilot workshops, with particular focus on using mechatronic NIMEs as a catalyst for the development of programing skills.
- Move the Object or Move Myself? Walking vs. Manipulation for the Examination of 3D Scientific DataLages, Wallace S.; Bowman, Douglas A. (Frontiers, 2018-07-10)Physical walking is consistently considered a natural and intuitive way to acquire viewpoints in a virtual environment. However, research findings also show that walking requires cognitive resources. To understand how this tradeoff affects the interaction design for virtual environments; we evaluated the performance of 32 participants, ranging from 18 to 44 years old, in a demanding visual and spatial task. Participants wearing a virtual reality (VR) headset counted features in a complex 3D structure while walking or while using a 3D interaction technique for manipulation. Our results indicate that the relative performance of the interfaces depends on the spatial ability and game experience of the participants. Participants with previous game experience but low spatial ability performed better using the manipulation technique. However, walking enabled higher performance for participants with low spatial ability and without significant game experience. These findings suggest that the optimal design choices for demanding visual tasks in VR should consider both controller experience and the spatial ability of the target users.
- Force Push: Exploring Expressive Gesture-to-Force Mappings for Remote Object Manipulation in Virtual RealityYu, Run; Bowman, Douglas A. (Frontiers Media, 2018-09-28)This paper presents Force Push, a novel gesture-based interaction technique for remote object manipulation in virtual reality (VR). Inspired by the design of magic powers in popular culture, Force Push uses intuitive hand gestures to drive physics-based movement of the object. Using a novel algorithm that dynamically maps rich features of hand gestures to the properties of the physics simulation, both coarse-grained ballisticmovements and fine-grained refinementmovements can be achieved seamlessly and naturally. An initial user study of a limited translation task showed that, although its gesture-to-force mapping is inherently harder to control than traditional position-to-position mappings, Force Push is usable even for extremely difficult tasks. Direct position-to-position control outperformed Force Push when the initial distance between the object and the target was close relative to the required accuracy; however, the gesture-based method began to show promising results when they were far away from each other. As for subjective user experience, Force Push was perceived as more natural and fun to use, even though its controllability and accuracy were thought to be inferior to direct control. This paper expands the design space of object manipulation beyond mimicking reality, and provides hints on using magical gestures and physics-based techniques for higher usability and hedonic qualities in user experience.
- Read-Agree-Predict: A Crowdsourced Approach to Discovering Relevant Primary Sources for HistoriansWang, Nai-Ching; Hicks, David; Quigley, Paul; Luther, Kurt (Human Computation Institute, 2019)Historians spend significant time looking for relevant, high-quality primary sources in digitized archives and through web searches. One reason this task is time-consuming is that historians’ research interests are often highly abstract and specialized. These topics are unlikely to be manually indexed and are difficult to identify with automated text analysis techniques. In this article, we investigate the potential of a new crowdsourcing model in which the historian delegates to a novice crowd the task of labeling the relevance of primary sources with respect to her unique research interests. The model employs a novel crowd workflow, Read-Agree-Predict (RAP), that allows novice crowd workers to label relevance as well as expert historians. As a useful byproduct, RAP also reveals and prioritizes crowd confusions as targeted learning opportunities. We demonstrate the value of our model with two experiments with paid crowd workers (n=170), with the future goal of extending our work to classroom students and public history interventions. We also discuss broader implications for historical research and education.
- Consistency of Sedentary Behavior Patterns among Office Workers with Long-Term Access to Sit-Stand WorkstationsHuysmans, Maaike A.; Srinivasan, Divya; Mathiassen, Svend Erik (Oxford University Press, 2019-04-22)Introduction: Sit-stand workstations are a popular intervention to reduce sedentary behavior (SB) in office settings. However, the extent and distribution of SB in office workers long-term accustomed to using sit-stand workstations as a natural part of their work environment are largely unknown. In the present study, we aimed to describe patterns of SB in office workers with long-term access to sit-stand workstations and to determine the extent to which these patterns vary between days and workers. Methods: SB was objectively monitored using thigh-worn accelerometers for a full week in 24 office workers who had been equipped with a sit-stand workstation for at least 10 months. A comprehensive set of variables describing SB was calculated for each workday and worker, and distributions of these variables between days and workers were examined. Results: On average, workers spent 68% work time sitting [standard deviation (SD) between workers and between days (within worker): 10.4 and 18.2%]; workers changed from sitting to standing/ walking 3.2 times per hour (SDs 0.6 and 1.2 h−1); with bouts of sitting being 14.9 min long (SDs 4.2 and 8.5 min). About one-third of the workers spent >75% of their workday sitting. Between-workers variability was significantly different from zero only for percent work time sitting, while betweendays (within-worker) variability was substantial for all SB variables. Conclusions: Office workers accustomed to using sit-stand workstations showed homogeneous patterns of SB when averaged across several days, except for percent work time seated. However, SB differed substantially between days for any individual worker. The finding that many workers were extensively sedentary suggests that just access to sit-stand workstations may not be a sufficient remedy against SB; additional personalized interventions reinforcing use may be needed. To this end, differences in SB between days should be acknowledged as a potentially valuable source of variation.
- Introducing Locus: a NIME for Immersive Exocentric Aural EnvironmentsSardana, Disha; Joo, Woohun; Bukvic, Ivica Ico; Earle, Gregory D. (ACM, 2019-06)Locus is a NIME designed specifically for an interactive, immersive high density loudspeaker array environment. The system is based on a pointing mechanism to interact with a sound scene comprising 128 speakers. Users can point anywhere to interact with the system, and the spatial interaction utilizes motion capture, so it does not require a screen. Instead it is completely controlled via hand gestures using a glove that is populated with motion-tracking markers. The main purpose of this system is to offer intuitive physical interaction with the perimeter-based spatial sound sources. Further, its goal is to minimize user-worn technology and thereby enhance freedom of motion by utilizing environmental sensing devices, such as motion capture cameras or infrared sensors. The ensuing creativity enabling technology is applicable to a broad array of possible scenarios, from researching limits of human spatial hearing perception to facilitating learning and artistic performances, including dance. Below we describe our NIME design and implementation, its preliminary assessment, and offer a Unity-based toolkit to facilitate its broader deployment and adoption.
- Immersive Analytics: Theory and Research AgendaSkarbez, Richard; Polys, Nicholas F.; Ogle, J. Todd; North, Christopher L.; Bowman, Douglas A. (Frontiers, 2019-09-10)Advances in a variety of computing fields, including "big data," machine learning, visualization, and augmented/mixed/virtual reality, have combined to give rise to the emerging field of immersive analytics, which investigates how these new technologies support analysis and decision making. Thus far, we feel that immersive analytics research has been somewhat ad hoc, possibly owing to the fact that there is not yet an organizing framework for immersive analytics research. In this paper, we address this lack by proposing a definition for immersive analytics and identifying some general research areas and specific research questions that will be important for the development of this field. We also present three case studies that, while all being examples of what we would consider immersive analytics, present different challenges, and opportunities. These serve to demonstrate the breadth of immersive analytics and illustrate how the framework proposed in this paper applies to practical research.