Scholarly Works, Virginia Tech Transportation Institute
Permanent URI for this collection
Browse
Browsing Scholarly Works, Virginia Tech Transportation Institute by Issue Date
Now showing 1 - 20 of 80
Results Per Page
Sort Options
- Applicability of mesopic factors to the driving taskGibbons, Ronald B.; Terry, Travis N.; Bhagavathula, Rajaram; Meyer, Jason E.; Lewis, A. (SAGE, 2016-02-01)With the advent of light-emitting diode technology being applied to roadway lighting, the spectral power distribution of the light source is becoming much more important. In this experiment, the detection of pedestrians at five adaptation levels under three light sources, high pressure sodium and light emitting diodes of two colour temperatures was measured in realistic roadway scenarios. The results show that while the light source type was not significant, an increase in adaptation luminance increased the detection distance. As the offset of the object to the roadway increased, some spectral effects became more significant; however, this effect was not consistent across all angles of eccentricity. The conclusions from this work indicate that mesopic factors may not be applicable on high-speed roads.
- Factors Influencing Learner Permit DurationEhsani, Johnathon P.; Li, Kaigang; Grant, Brydon J. B.; Gershon, Pnina; Klauer, Charlie; Dingus, Thomas A.; Simons-Morton, Bruce G. (MDPI, 2016-12-22)An increasing number of countries are requiring an extended learner permit prior to independent driving. The question of when drivers begin the learner permit period, and how long they hold the permit before advancing to independent licensure has received little research attention. Licensure timing is likely to be related to “push” and “pull” factors which may encourage or inhibit the process. To examine this question, we recruited a sample of 90 novice drivers (49 females and 41 males, average age of 15.6 years) soon after they obtained a learner permit and instrumented their vehicles to collect a range of driving data. Participants completed a series of surveys at recruitment related to factors that may influence licensure timing. Two distinct findings emerged from the time-to-event analysis that tested these push and pull factors in relation to licensure timing. The first can be conceptualized as teens’ motivation to drive (push), reflected in a younger age when obtaining a learner permit and extensive pre-permit driving experience. The second finding was teens’ perceptions of their parents’ knowledge of their activities (pull); a proxy for a parents’ attentiveness to their teens’ lives. Teens who reported higher levels of their parents’ knowledge of their activities took longer to advance to independent driving. These findings suggest time-to-licensure may be related to teens’ internal motivation to drive, and the ability of parents to facilitate or impede early licensure.
- Effect of Work Zone Lighting on Drivers' Visual Performance and Perceptions of GlareBhagavathula, Rajaram; Gibbons, Ronald B. (National Academy of Sciences, 2017-01-01)Nighttime crashes at work zones are major concerns for construction workers and motorists. Although in a majority of the U.S. states, department of transportation specifications for work zone lighting mention that contractors should reduce glare for workers and drivers, only two states advocate detailed specifications like light positions, orientation, and light levels. Although some studies have examined the impact of glare from work zone lights on workers and others have calculated veiling luminance levels for drivers in the work zone, the effect of work zone lighting on drivers’ visual performance and glare perception has never been studied in a realistic setting. The goal of this study was to understand the impact of commercially available portable light towers (metal halide, LED, and balloon) and their orientation on drivers’ visual performance and their perceptions of glare. Participants drove through a realistic work zone simulated on the Virginia Smart Road. Visual performance was assessed by a detection task and perception of visibility and glare were assessed by questionnaires. Results indicated that the type of light tower and its orientation affect visual performance and perceptions of visibility and glare. Light towers aimed toward the driver resulted in lowering drivers’ visual performance, both objectively and subjectively. When the light towers were aimed away from or perpendicular to the driver, the visual performance was higher and the differences in visual performance between the types of light towers were minimal. These findings indicate that these orientations should be preferred for work zone light towers.
- Pilot Testing a Naturalistic Driving Study to Investigate Winter Maintenance Operator Fatigue during Winter EmergenciesCamden, Matthew C.; Hickman, Jeffrey S.; Hanowski, Richard J. (MDPI, 2017-08-14)Although numerous research studies have investigated the effects of fatigue in commercial motor vehicle drivers, research with winter maintenance (WM) drivers is sparse. This study pilot-tested the feasibility of evaluating WM operator fatigue during winter emergencies using naturalistic driving data. Four WM operators participated in the study and drove two instrumented snow plows for three consecutive winter months. The operators also wore an actigraph device used to measure sleep quantity. As this was a pilot study, the results were limited and only provided an estimation of what may be found in a large-scale naturalistic driving study with WM operators. Results showed the majority of safety-critical events (SCEs) occurred during the night, and approximately half of the SCEs occurred when participants were between 5 and 8 h into their shifts. Fatigue was identified as the critical reason in 33% of the SCEs, and drivers were found to average less sleep during winter emergencies versus winter non-emergencies. However, one participant accounted for all fatigue-related SCEs. Although data were limited to two instrumented trucks and four drivers, results support the approach of using naturalistic driving data to assess fatigue in WM operators. Future on-road research is needed to understand the relationship between fatigue and crash risk in WM operators.
- Teen Driving Risk and Prevention: Naturalistic Driving Research Contributions and ChallengesSimons-Morton, Bruce G.; Ehsani, Johnathon P.; Gershon, Pnina; Klauer, Charlie; Dingus, Thomas A. (MDPI, 2017-12-18)Naturalistic driving (ND) methods may be particularly useful for research on young driver crash risk. Novices are not safe drivers initially, but tend to improve rapidly, although the pace of learning is highly variable. However, knowledge is lacking about how best to reduce the learning curve and the variability in the development of safe driving judgment. A great deal has been learned from recent naturalistic driving (ND) studies that have included young drivers, providing objective information on the nature of crash risk and the factors that contribute to safety critical events. This research indicates that most learners obtain at least the amount of practice driving recommended and develop important driving skills. Unfortunately, most learners are not exposed during training to more complex driving situations and the instruction provided by supervising parents is mostly reactive and may not fully prepare teens for independent driving. While supervised practice driving is quite safe, crash rates are high during the first six months or so of independent driving then decline rapidly, but remain high for years relative to experienced drivers. Contributing factors to crash risk include exposure, inexperience, elevated gravitational-force event rates, greater willingness to engage in secondary tasks while driving, and social influence from peer passengers. The findings indicate the need and possible objectives for improving practice driving instruction and developing innovative prevention approaches for the first year of independent driving.
- Effects of Intersection Lighting Design on Nighttime Visual Performance of DriversBhagavathula, Rajaram; Gibbons, Ronald B.; Nussbaum, Maury A. (Taylor & Francis, 2018-01-01)Nighttime crashes at intersections present a major traffic safety issue in the United States. Existing approaches to intersection lighting design do not account for a driver’s visual performance or the potential interactive effects of vehicle headlamps and roadway lighting. For effective design lighting at intersections, empirical research is required to evaluate the effects of lighting configuration (part of the intersection illuminated) and lighting levels on nighttime driver visual performance. The current study had two goals: First, to quantify visual performance in three lighting configurations (illuminating the intersection box, approach, or both) and second, to determine what lighting levels within each lighting configuration support the best visual performance. The study involved a target detection task completed at night on a realistic roadway intersection. Illuminating the intersection box led to superior visual performance, as indicated by longer target detection distances, fewer missed targets, and more targets identified within a safe stopping distance. For this lighting configuration, visual performance plateaued between 7 and 10 lx of mean intersection illuminance. These results have important implications for the design of intersection lighting at isolated/rural intersections, specifically that illuminating the intersection box is an effective strategy to increase nighttime visual performance for a wider range of driver ages and could also be an energy-efficient solution.
- Effects of Mounting Height, Offset Distance, and Number of Light Towers on Drivers' Visual Performance and Discomfort Glare in Work ZonesBhagavathula, Rajaram; Gibbons, Ronald B. (SAGE, 2018-12-01)Portable light towers are a significant source of glare to motorists entering a work zone. Although existing research has evaluated the effect of light tower orientation on visibility and glare, the effects of factors like mounting height, offset distance from the roadway, and number of light towers in the work zone, on visual performance and discomfort glare is not known. Understanding these relationships can help in developing illuminating guidelines for work zones that can reduce glare for drivers. The goal of this paper is to understand the effect of mounting height, offset distance to the roadway, and number of light towers in the work zone on drivers’ visual performance and discomfort glare. Participants drove through a realistic work zone and evaluated portable light towers in varying mounting heights, offset distances, and number of light towers in the work zone. Results showed that the mounting height and offset distances play a critical role in affecting the driver’s visual performance and discomfort glare rating. Portable light towers, irrespective of wattage and lumen output, at lower than a mounting height of 20 ft and closer to the roadway result in decreasing driver visual performance and increasing their discomfort glare. Portable light towers should be mounted at a height of at least 20 ft and balloon light towers with higher wattage (4,000 W and greater) and lumen output (400,000 lumens and greater) should be located at an offset distance of at least 10 ft from the roadway.
- Implementation Phase Safety System for Minimising Construction Project WasteMahfuth, Kamal; Loulizi, Amara; Al Hallaq, Khalid; Tayeh, Bassam A. (MDPI, 2019-01-18)The construction sector is a key component of a nation’s gross domestic product, but its inherent nature results in potentially dangerous conditions that affect the safety of all workers on construction projects (CPs). Therefore, the original idea of the research is to determine the relationship between safety system (SS) during the implementation phase (IPh) of CPs and the minimisation of waste (materials, time and cost). Achieving a lean construction work requires suitable planning, safety considerations and waste resource minimisation throughout the project cycle. This research aims to identify and rank the safety factors during the IPh of a CP, which will have positive effects on minimising waste. Information and data were gathered from the existing literature and the structured interviews and questionnaire survey conducted among 111 randomly selected construction companies. Questionnaire results were evaluated using statistical tools, such as hypothesis testing, analysis of variance and linear regression. This research identified and ranked 24 important safety factors with positive effects on minimising waste in CPs during IPh. The seven most important safety factors that should be considered to minimise material, time and cost wastage are as follows: handling, management, external factors, workers, procurement, site condition and appropriate scaffolding for SS. The best linear model was developed on the basis of the importance index of the identified factors. This model can predict the minimisation of waste (materials, time and cost) in CPs by using SS. Thus, the safety criteria and SS should be used during IPh to minimise waste on the basis of the developed model.
- The "Out-of-the-Loop" concept in automated driving: proposed definition, measures and implicationsMerat, Natasha; Seppelt, Bobbie; Louw, Tyron; Engström, Johan; Lee, John D.; Johansson, Emma; Green, Charles A.; Katazaki, Satoshi; Monk, Chris; Itoh, Makoto; McGehee, Daniel V.; Sunda, Takashi; Unoura, Kiyozumi; Victor, Trent; Schieben, Anna; Keinath, Andreas (Springer, 2019-02)Despite an abundant use of the term Out of the loop (OOTL) in the context of automated driving and human factors research, there is currently a lack of consensus on its precise definition, how it can be measured, and the practical implications of being in or out of the loop during automated driving. The main objective of this paper is to consider the above issues, with the goal of achieving a shared understanding of the OOTL concept between academics and practitioners. To this end, the paper reviews existing definitions of OOTL and outlines a set of concepts, which, based on the human factors and driver behaviour literature, could serve as the basis for a commonly-agreed definition. Following a series of working group meetings between representatives from academia, research institutions and industrial partners across Europe, North America, and Japan, we suggest a precise definition of being in, out, and on the loop in the driving context. These definitions are linked directly to whether or not the driver is in physical control of the vehicle, and also the degree of situation monitoring required and afforded by the driver. A consideration of how this definition can be operationalized and measured in empirical studies is then provided, and the paper concludes with a short overview of the implications of this definition for the development of automated driving functions.
- Effect of Intersection Lighting Design on Drivers' Perceived Visibility and GlareBhagavathula, Rajaram; Gibbons, Ronald B.; Nussbaum, Maury A. (SAGE, 2019-02-01)A systems-level approach to intersection lighting design has shown that illuminating the intersection box increases drivers’ nighttime visual performance. However, for an intersection lighting design to be effective and accepted, it should not only maximize visual performance but also enhance perceived visibility and minimize glare. The goals of this study were to assess the effects of different intersection lighting designs on these two outcomes. Visibility was assessed with respect to a pedestrian, several targets, and an intersection. Perceptions of visibility and glare were measured using Likert scales, with participants exposed to multiple lighting designs on a realistic intersection. Twenty-four participants completed the study, with an equal number of younger (18–35 years) and older (65+) drivers. The lighting design that illuminated the intersection box had the highest levels of perceived target and intersection visibility and the lowest ratings of glare. For the same lighting configuration, a strong positive correlation was also found between perceived target visibility and previous results on target detection distances. In this configuration, perceived visibility plateaued between 7 and 10 lux of mean intersection illuminance. Increased levels of perceived visibility in different conditions were likely a result of size and contrast differences, and the distribution of the luminaires used. These results suggest that illuminating the intersection box has multiple benefits, in that it not only increases visual performance but also increases perceived visibility and reduces glare.
- Data and methods for studying commercial motor vehicle driver fatigue, highway safety and long-term driver healthStern, Hal S.; Blower, Daniel; Cohen, Michael L.; Czeisler, Charles A.; Dinges, David F.; Greenhouse, Joel B.; Guo, Feng; Hanowski, Richard J.; Hartenbaum, Natalie P.; Krueger, Gerald P.; Mallis, Melissa M.; Pain, Richard F.; Rizzo, Matthew; Sinha, Esha; Small, Dylan S.; Stuart, Elizabeth A.; Wegman, David H. (Elsevier, 2019-05)This article summarizes the recommendations on data and methodology issues for studying commercial motor vehicle driver fatigue of a National Academies of Sciences, Engineering, and Medicine study. A framework is provided that identifies the various factors affecting driver fatigue and relating driver fatigue to crash risk and long-term driver health. The relevant factors include characteristics of the driver, vehicle, carrier and environment. Limitations of existing data are considered and potential sources of additional data described. Statistical methods that can be used to improve understanding of the relevant relationships from observational data are also described. The recommendations for enhanced data collection and the use of modern statistical methods for causal inference have the potential to enhance our understanding of the relationship of fatigue to highway safety and to long-term driver health.
- Steady-State Car-Following Time Gaps: An Empirical Study Using Naturalistic Driving DataLoulizi, Amara; Bichiou, Youssef; Rakha, Hesham A. (Hindawi, 2019-05-13)The time gap is defined as the time difference between the rear of a vehicle and the front of its follower, which affects both safety and the saturation flow rate of a roadway segment. In this study, naturalistic driving data were examined to measure time gaps from seven different drivers in a car-following scenario within steady-state conditions. The measurements were taken from a 13-km section of a Dulles Airport access road in Washington, DC. In total, 168,053 time gap samples were obtained covering seven speed intervals. Analysis of the data revealed a large variation in time gaps within individual drivers’ driving data, with coefficients of variation as high as 63.8% observed for some drivers. Results also showed that the variability within drivers was more significant at speeds higher than 54 km/h. In addition, there was a large variability between drivers. At speeds above 108 km/h, minimum time gaps left by some drivers could be 1.6 times longer than those left by others. Several statistical distributions were used to fit the data of the seven drivers as well as the data for all drivers combined for each speed interval. The selected distributions passed the goodness-of-fit (Kolmogorov-Smirnov, Chi-square, and Anderson-Darling) criteria only when the number of samples was reduced. Data reduction was not performed randomly, but rather in a manner intended to maintain the same observed distribution when all the samples were used. It is therefore recommended that empirical measures of distributions be used in traffic microsimulation software rather than theoretically fit distributions obtained based on statistical tests. This will lead to better naturalistic traffic behavior simulations, resulting in more precise predicted measures of performance (travel time, fuel consumption, and gas emissions).
- A Novel Decentralized Game-Theoretic Adaptive Traffic Signal Controller: Large-Scale TestingAbdelghaffar, Hossam M.; Rakha, Hesham A. (MDPI, 2019-05-17)This paper presents a novel de-centralized flexible phasing scheme, cycle-free, adaptive traffic signal controller using a Nash bargaining game-theoretic framework. The Nash bargaining algorithm optimizes the traffic signal timings at each signalized intersection by modeling each phase as a player in a game, where players cooperate to reach a mutually agreeable outcome. The controller is implemented and tested in the INTEGRATION microscopic traffic assignment and simulation software, comparing its performance to that of a traditional decentralized adaptive cycle length and phase split traffic signal controller and a centralized fully-coordinated adaptive phase split, cycle length, and offset optimization controller. The comparisons are conducted in the town of Blacksburg, Virginia (38 traffic signalized intersections) and in downtown Los Angeles, California (457 signalized intersections). The results for the downtown Blacksburg evaluation show significant network-wide efficiency improvements. Specifically, there is a 23.6 % reduction in travel time, a 37.6 % reduction in queue lengths, and a 10.4 % reduction in CO 2 emissions relative to traditional adaptive traffic signal controllers. In addition, the testing on the downtown Los Angeles network produces a 35.1 % reduction in travel time on the intersection approaches, a 54.7 % reduction in queue lengths, and a 10 % reduction in CO 2 emissions compared to traditional adaptive traffic signal controllers. The results demonstrate significant potential benefits of using the proposed controller over other state-of-the-art centralized and de-centralized adaptive traffic signal controllers on large-scale networks both during uncongested and congested conditions.
- Identifying High-Risk Intersections for Walking and Bicycling Using Multiple Data Sources in the City of San DiegoHasani, Mahdie; Jahangiri, Arash; Sener, Ipek Nese; Munira, Sirajum; Owens, Justin M.; Appleyard, Bruce; Ryan, Sherry; Turner, Shawn M.; Machiani, Sahar Ghanipoor (Hindawi, 2019-06-16)Over the last decade, demand for active transportation modes such as walking and bicycling has increased. While it is desirable to provide high levels of safety for these eco-friendly modes of travel, unfortunately, the overall percentage of pedestrian and bicycle fatalities increased from 13% to 18% of total road-related fatalities in the last decade. In San Diego County, although the total number of pedestrian and bicyclist fatalities decreased over the same period of time, a similar trend with a more drastic change is observed; the overall percentage of pedestrian and bicycle fatalities increased from 19.5% to 31.8%. This study aims to estimate pedestrian and bicyclist exposure and identify signalized intersections with highest risk for walking and bicycling within the city of San Diego, California, USA. Multiple data sources such as automated pedestrian and bicycle counters, video cameras, and crash data were utilized. Data mining techniques, a new sampling strategy, and automated video processing methods were adopted to demonstrate a holistic approach that can be applied to identify facilities with highest need of improvement. Cluster analysis coupled with stratification was employed to select a representative sample of intersections for data collection. Automated pedestrian and bicycle counting models utilized in this study reached a high accuracy, provided certain conditions exist in video data. Results from exposure modeling showed that pedestrian and bicyclist volume was characterized by transportation network, population, traffic generators, and land use variables. There were both similarities and differences between pedestrian and bicycle models, including different spatial scales of influence by mode. Additionally, the study quantified risk incorporating injury severity levels, frequency of victims, distance crossed, and exposure into a single equation. It was found that not all intersections with the highest number of pedestrian and bicyclist victims were identified as high-risk after exposure and other factors such as crash severity were taken into account.
- Feasibility Study for Using Piezoelectric-Based Weigh-In-Motion (WIM) System on Public RoadwayXiong, Haocheng; Zhang, Yinning (MDPI, 2019-07-31)Weigh-in-Motion system has been the primary selection of U.S. government agencies as the weighing enforcement for decades to protect the road pavement. In recent years, the number of trucks has increased by about 40% and in 2017, they travel 25% more annually than in 2016. The lack of the budget has slowed down the expansion of weighing enforcement to catch up with the growing workload of vehicle weighing. Unsupervised pavement section suffers more pavement damage and increased repairing cost. In this work, a piezoelectric material based WIM system (P-WIM) is developed. Such a system consists of several piezoelectric material disks that are capable of generating characteristic voltage output from passing vehicles. The axle loading of the vehicle can be determined by analyzing the voltage generated from the P-WIM. Compared to traditional WIM system, P-WIM requires nearly zero maintenance and costs 80% less on capital investment and less labor and effort to integrate. To evaluate the feasibility of this technology to serve as weighing enforcement on public roadways, prototype P-WIMs are fabricated and installed at a weigh station. The vehicle loading information provided by the weigh station is used to determine the force transmission percentage of the installed P-WIMs, which is an important parameter to determine the vehicles’ axle loading by generated voltage.
- Identifying Equipment Factors Associated with Snowplow Operator FatigueCamden, Matthew C.; Hickman, Jeffrey S.; Soccolich, Susan A.; Hanowski, Richard J. (MDPI, 2019-09-01)A recent body of research in fatigue management indicates that other factors, including in-cab and external equipment, contribute to operator fatigue. The goal of this project was to identify winter road maintenance equipment (in-cab and external) that may increase or mitigate snowplow operator fatigue. To accomplish this goal, questionnaires from 2011 snowplow operators were collected from 23 states in the U.S. Results confirmed previous research that fatigue is prevalent in winter road maintenance operations. Winter road maintenance equipment that produced excessive vibrations, noise, reduced visibility, and complex task demands were found to increase snowplow operators’ self-reported fatigue. Similarly, equipment that reduced vibrations and external noise, improved visibility, and limited secondary tasks were found to reduce snowplow operator’s self-reported fatigue. Based on the questionnaire responses and the feasibility of implementation, the following equipment may help to mitigate or prevent snowplow operator fatigue: dimmable interior lighting, LED bulbs for exterior lighting, dimmable warning lights, a CD player or satellite radio in each vehicle, heated windshield, snow deflectors, narrow-beam auxiliary lighting, and more ergonomically designed seats with vibration dampening/air-ride technology.
- Examining senior drivers’ acceptance to advanced driver assistance systemsLiang, Dan; Antin, Jonathan F.; Lau, Nathan (2019-09-10)Advanced driver assistance systems (ADAS) can help maintain seniors’ safety and mobility with their decline in cognitive and physical capabilities. An early step of investigating the adoption and merits of ADAS for senior drivers is examining the factors that influence senior drivers’ acceptance of the technology. This paper presents our modeling effort on the acceptance of 18 senior drivers towards adaptive cruise control (ACC) and lane control features after six weeks of naturalistic driving with study vehicles. Adapting the Technology Acceptance Model (TAM), our model is built on questionnaire data on perceived usefulness (PU), perceived ease of use (PEoU), usebased trust (T) and perceived satisfaction (PS) in predicting behavioral intention to use (BIU) ADAS. Two major findings in our modeling effort are that (i) perceived ease of use has significant influence on trust and (ii) perceived satisfaction has significant influence on behavioral intention to use.
- Developing a Neural–Kalman Filtering Approach for Estimating Traffic Stream Density Using Probe Vehicle DataAljamal, Mohammad A.; Abdelghaffar, Hossam M.; Rakha, Hesham A. (MDPI, 2019-10-07)This paper presents a novel model for estimating the number of vehicles along signalized approaches. The proposed estimation algorithm utilizes the adaptive Kalman filter (AKF) to produce reliable traffic vehicle count estimates, considering real-time estimates of the system noise characteristics. The AKF utilizes only real-time probe vehicle data. The AKF is demonstrated to outperform the traditional Kalman filter, reducing the prediction error by up to 29%. In addition, the paper introduces a novel approach that combines the AKF with a neural network (AKFNN) to enhance the vehicle count estimates, where the neural network is employed to estimate the probe vehicles’ market penetration rate. Results indicate that the accuracy of vehicle count estimates is significantly improved using the AKFNN approach (by up to 26%) over the AKF. Moreover, the paper investigates the sensitivity of the proposed AKF model to the initial conditions, such as the initial estimate of vehicle counts, initial mean estimate of the state system, and the initial covariance of the state estimate. The results demonstrate that the AKF is sensitive to the initial conditions. More accurate estimates could be achieved if the initial conditions are appropriately selected. In conclusion, the proposed AKF is more accurate than the traditional Kalman filter. Finally, the AKFNN approach is more accurate than the AKF and the traditional Kalman filter since the AKFNN uses more accurate values of the probe vehicle market penetration rate.
- AR DriveSim: An Immersive Driving Simulator for Augmented Reality Head-Up Display ResearchGabbard, Joseph L.; Smith, Missie; Tanous, Kyle; Kim, Hyungil; Jonas, Bryan (Frontiers, 2019-10-23)Optical see-through automotive head-up displays (HUDs) are a form of augmented reality (AR) that is quickly gaining penetration into the consumer market. Despite increasing adoption, demand, and competition among manufacturers to deliver higher quality HUDs with increased fields of view, little work has been done to understand how best to design and assess AR HUD user interfaces, and how to quantify their effects on driver behavior, performance, and ultimately safety. This paper reports on a novel, low-cost, immersive driving simulator created using a myriad of custom hardware and software technologies specifically to examine basic and applied research questions related to AR HUDs usage when driving. We describe our experiences developing simulator hardware and software and detail a user study that examines driver performance, visual attention, and preferences using two AR navigation interfaces. Results suggest that conformal AR graphics may not be inherently better than other HUD interfaces. We include lessons learned from our simulator development experiences, results of the user study and conclude with limitations and future work.
- Environmental Impact of Freight Signal Priority with Connected TrucksPark, Sangjun; Ahn, Kyoungho; Rakha, Hesham A. (MDPI, 2019-12-01)Traffic signal priority is an operational technique employed for the smooth progression of a specific type of vehicle at signalized intersections. Transit signal priority is the most common type of traffic signal priority, and it has been researched extensively. Conversely, the impacts of freight signal priority (FSP) has not been widely investigated. Hence, this study aims to evaluate the energy and environmental impacts of FSP under connected vehicle environment by utilizing a simulation testbed developed for the multi-modal intelligent transportation signal system. The simulation platform consists of VISSIM microscopic traffic simulation software, a signal request messages distributor program, an RSE module, and an Econolite ASC/3 traffic controller emulator. The MOVES model was employed to estimate the vehicle fuel consumption and emissions. The simulation study revealed that the implementation of FSP significantly reduced the fuel consumption and emissions of connected trucks and general passenger cars; the network-wide fuel consumption was reduced by 11.8%, and the CO2, HC, CO, and NOX emissions by 11.8%, 28.3%, 24.8%, and 25.9%, respectively. However, the fuel consumption and emissions of the side-street vehicles increased substantially due to the reduced green signal times on the side streets, especially in the high truck composition scenario.