Destination Area: Intelligent Infrastructure for Human-Centered Communities (IIHCC)
Permanent URI for this collection
IIHCC focuses its attention on the ways that people interact with one another and with their environment. Interest areas in this DA include smart, healthy, and sustainable cities and communities; transportation systems; human safety, health, and wellness; integrated energy systems; network science and engineering; public policy; and cyber-physical systems. The initial focus for IIHCC will be on four themes:
Ubiquitous Mobility: The location-agnostic promise of new communication and information technologies
Automated Vehicle Systems: vehicles that can transit safely and efficiently through our communities independent of a human operator
Smart Design and Construction: an intelligent, integrated, adaptable, responsive, and sustainable human-centric built environment
Energy: the underlying innovations that will be required in the production, distribution, and consumption of energy to realize such a system
Browse
Browsing Destination Area: Intelligent Infrastructure for Human-Centered Communities (IIHCC) by Issue Date
Now showing 1 - 20 of 120
Results Per Page
Sort Options
- Usability Evaluation in Virtual Environments: Classification and Comparison of MethodsBowman, Douglas A.; Gabbard, Joseph L.; Hix, Deborah (Department of Computer Science, Virginia Polytechnic Institute & State University, 2001)Virtual environments (VEs) are a relatively new type of human-computer interface in which users perceive and act in a three-dimensional world. The designers of such systems cannot rely solely on design guidelines for traditional two-dimensional interfaces, so usability evaluation is crucial for VEs. We present an overview of VE usability evaluation. First, we discuss some of the issues that differentiate VE usability evaluation from evaluation of traditional user interfaces such as GUIs. We also present a review of VE evaluation methods currently in use, and discuss a simple classification space for VE usability evaluation methods. This classification space provides a structured means for comparing evaluation methods according to three key characteristics: involvement of representative users, context of evaluation, and types of results produced. To illustrate these concepts, we compare two existing evaluation approaches: testbed evaluation [Bowman, Johnson, & Hodges, 1999], and sequential evaluation [Gabbard, Hix, & Swan, 1999]. We conclude by presenting novel ways to effectively link these two approaches to VE usability evaluation.
- A Survey of Usability Evaluation in Virtual Environments: Classification and Comparison of MethodsBowman, Douglas A.; Gabbard, Joseph L.; Hix, Deborah (MIT Press, 2002-08-01)Virtual environments (VEs) are a relatively new type of human-computer interface in which users perceive and act in a three-dimensional world. The designers of such systems cannot rely solely on design guidelines for traditional two-dimensional interfaces, so usability evaluation is crucial for VEs. This paper presents an overview of VE usability evaluation to organize and critically analyze diverse work from this field. First, we discuss some of the issues that differentiate VE usability evaluation from evaluation of traditional user interfaces such as GUIs. We also present a review of some VE evaluation methods currently in use, and discuss a simple classification space for VE usability evaluation methods. This classification space provides a structured means for comparing evaluation methods according to three key characteristics: involvement of representative users, context of evaluation, and types of results produced. Finally, to illustrate these concepts, we compare two existing evaluation approaches: testbed evaluation (Bowman, Johnson, & Hodges, 1999) and sequential evaluation (Gabbard, Hix, & Swan, 1999).
- Intersection Decision Support: Evaluation of a Violation Warning System to Mitigate Straight Crossing Path CollisionsNeale, Vicki L.; Perez, Miguel A.; Doerzaph, Zachary R.; Lee, Suzanne E.; Stone, Scott R.; Dingus, Thomas A. (Virginia Center for Transportation Innovation and Research, 2006-04)This project entailed the design, development, testing, and evaluation of intersection decision support (IDS) systems to address straight crossing path (SCP) intersection crashes. This type of intersection crash is responsible for more than 100,000 crashes and thousands of fatalities each year. In developing these IDS systems for both signalized and stop-controlled intersections, a top-down systems approach was used that determined the necessary system functions and evaluated the capability of different technologies to perform those functions. Human factors tests were also conducted that evaluated the effectiveness of warning algorithms and infrastructure-based driver-infrastructure interfaces in eliciting a stopping response from drivers about to be involved in an SCP intersection crash. Results indicated that further technological development is needed for the sensing and intersection state IDS functions. Furthermore, infrastructure-based warning interfaces tested were greatly outperformed by previously-tested in-vehicle warnings. Thus, future research on IDS systems should focus on their infrastructure-cooperative configuration, where the system supports an in-vehicle warning.
- Dynamics and Control of Underwater Gliders I: Steady MotionsMahmoudian, N.; Geisbert, J.; Woolsey, Craig A. (Virginia Center for Autonomous Systems, 2007)This paper describes analysis of steady motions for underwater gliders, a type of highly efficient underwater vehicle which uses gravity for propulsion. Underwater gliders are winged underwater vehicles which locomote by modulating their buoyancy and their attitude. Several such vehicles have been developed and have proven their worth as efficient long-distance, long-duration ocean sampling platforms. To date, the primary emphasis in underwater glider development has been on locomotive efficiency; maneuverability has been a secondary concern. The ultimate aim of our research is to develop optimal motion control strategies which enhance the natural locomotive efficiency of underwater gliders by minimizing the energy expended by the control system. Ambitious applications such as persistent undersea surveillance require not only efficient vehicles, but efficient guidance and control schemes. This technical report aims to develop a better understanding of glider maneuverability, particularly with regard to turning motions. As a preliminary step, we develop an approximate analytical expression for steady turning motion for a realistic glider model. The problem is formulated in terms of regular perturbation theory, with the vehicle turn rate as the perturbation parameter. The resulting solution exhibits a special structure that allows one to apply existing optimal path planning results for planar mobile robots. The ultimate result is a simple, energy-efficient motion control method for underwater gliders.
- Assessment of a Drowsy Driver Warning System for Heavy Vehicle Drivers: Final ReportOlson, Rebecca Lynn; Morgan, Justin F.; Hanowski, Richard J.; Daily, Brian; Zimmermann, Richard P.; Blanco, Myra; Bocanegra, Joseph L.; Fitch, Gregory M.; Flintsch, Alejandra Medina (United States. National Highway Traffic Safety Administration, 2008)Drowsiness has a globally negative impact on performance, slowing reaction time, decreasing situational awareness, and impairing judgment. A field operational test of an early prototype Drowsy Driver Warning System was conducted as a result of 12 years of field and laboratory studies by the National Highway Traffic Administration and the Federal Motor Carrier Safety Administration. This project included Control and Test groups. The final data set for the analysis consisted of 102 drivers from 3 for-hire trucking fleets using 46 instrumented trucks. Fifty-seven drivers were line-haul and 45 were long-haul operators. The data set contained nearly 12.4 terabytes of truck instrumentation data, kinematic data, and video recordings for 2.4 million miles of driving and 48,000 driving-data hours recorded, resulting in the largest data set ever collected by the U.S. Department of Transportation. In this study, 53 research questions were addressed related to safety benefits, acceptance, and deployment. Novel data reduction procedures and data analyses were used. Results showed that drivers in the Test Group were less drowsy. Drivers with favoring opinions of the system tended to have an increase in safety benefits. Results of the assessment revealed that the early prototype device had an overall positive impact on driver safety.
- Nonlinear Estimation with State-Dependent Gaussian Observation NoiseSpinello, D.; Stilwell, Daniel J. (Virginia Center for Autonomous Systems, 2008)We consider the problem of estimating the state of a system when measurement noise is a function of the system's state. We propose generalizations of the iterated extended Kalman filter and of the extended Kalman filter that can be utilized when the state estimate distribution is approximately Gaussian. The state estimate is computed by an iterative root-searching method that maximize a maximum likelihood function. For sensor network applications, we also address distributed implementations involving multiple sensors.
- Effectiveness and Acceptance of Adaptive Intelligent Speed Adaptation SystemsArhin, Stephen; Eskandarian, Azim; Blum, Jeremy; Delaigue, Pierre; Soudbakhsh, Damoon (The National Academies of Sciences, Engineering, and Medicine, 2008)Intelligent speed adaptation (ISA) systems face significant consumer acceptance hurdles that limit the likelihood of widespread adoption, particularly in the United States. However, if these systems are designed as speed management systems rather than speed limiting systems, with adaptability to individual driving behavior, they may be more likely to meet with consumer acceptance. The results of a fixed-based driving simulator experiment that tested the acceptance and effectiveness of a new type of ISA, called an Advanced Vehicular Speed Adaptation System (AVSAS), are reported. The results of the experiment showed that AVSAS resulted in reductions in driver speeds across a range of roadway types. AVSAS is a speed management system that adapts to an individual driver’s speed behavior and the current driving situation. AVSAS resulted in an average reduction of 5% of the maximum speeds and 3% of the average speeds of the drivers on four road segments. As expected, AVSAS did not reduce driver speeds as much as the mandatory control ISA system, and the experiment confirmed the results of tests conducted on ISA systems largely in Europe. Conversely, the results revealed that more participants were willing to purchase AVSAS compared with the information or mandatory ISAs. Although these results show the promise of a trade-off between system effectiveness and acceptability that has been missing in mandatory and information ISA research, AVSAS suggests that a range of ISA system design requirements could encourage the adoption of ISA systems in the United States.
- Optimal Control of an Undersea Glider in a Symmetric Pull-upKraus, R.; Cliff, Eugene M.; Woolsey, Craig A.; Luby, J. (Virginia Center for Autonomous Systems, 2008)An undersea glider is a winged autonomous undersea vehicle which modulates its buoyancy to rise or sink and moves its center of mass to control pitch and roll attitude. By properly phasing buoyancy and pitch control, an undersea glider rectifies the vertical motion caused by changes in buoyancy into forward motion caused by the lift force on the fixed wing. The characteristic "porpoising" motion is useful in oceanographic surveys and the propulsion method is extremely efficient - undersea gliders routinely operate for months without human intervention. Glider efficiency could be improved even further by addressing the phenomenon of "stall" (loss of lift) when a glider transitions from downward to upward flight. Because the stall phenomenon occurs asymmetrically over the vehicle's wing, it can cause directional errors which must be corrected at a corresponding energetic cost. This paper describes the formulation of a point mass model and its dynamic equations of motion. An optimal control formulation was designed using angle of attack and buoyancy as controls to investigate control scheduling methods for avoiding stall in a symmetric pull-up. The calculations were repeated using three different numerical solution techniques for comparison of the methodologies and results. The model was updated to include longitudinal rigid body dynamics and changed the control to the rate of change of the longitudinal center of gravity location. This model allowed for the inclusion of added mass effects due to fluid displacement.
- Sensor Error Model for a Uniform Linear ArrayGadre, Aditya; Roan, Michael J.; Stilwell, Daniel J. (Virginia Center for Autonomous Systems, 2008)We derive a measurement error model for a uniform linear array whose output is the bearing to a single narrowband acoustic source. The measurement error depends on various array as well as environmental parameters, which include the number of hydrophones in the array, spacing between adjacent hydrophones, frequency of the acoustic signal, speed of sound and signal-to-noise ratio. Most importantly, we show that the measurement error is a function of the true bearing from the array to the acoustic source.
- The Drowsy Driver Warning System Field Operational Test: Data Collection Methods: Final ReportHanowski, Richard J.; Blanco, Myra; Nakata, Akiko; Hickman, Jeffrey S.; Schaudt, William A.; Fumero, Maria C.; Olson, Rebecca Lynn; Jermeland, Julie; Greening, Michael; Holbrook, G. Thomas; Knipling, Ronald R.; Madison, Phillip (United States. National Highway Traffic Safety Administration, 2008-09)A Drowsy Driver Warning System (DDWS) detects physiological and/or performance indications of driver drowsiness and provides feedback to drivers regarding their state. The primary function of a DDWS is to provide information that will alert drivers to their drowsy state and motivate them to seek rest or take other corrective steps to increase alertness. The system tested in this study was the Driver Fatigue Monitor (DFM) developed by Attention Technologies, Inc., which estimates PERCLOS (percent eye closure). The primary goal of this field operational test (FOT) was to determine the safety benefits and operational capabilities, limitations, and characteristics of the DFM. The FOT was conducted in a naturalistic driving environment and data were collected from actual truck drivers driving commercial trucks. During the course of the study, 46 trucks were instrumented with a Data Acquisition System (DAS). Over 100 data variables such as the PERCLOS output from the DFM and driving performance data (e.g., lane position, speed, and longitudinal acceleration) were collected. Other collected measures included video, actigraphy, and questionnaires. The FOT had 103 drivers participate. Drivers were randomly assigned to either control (24 drivers) or experimental groups (79 drivers). The data collected include the following: approximately 46,000 driving-data hours; 397 load history files from 103 drivers; approximately 195,000 hours of activity/sleep data; questionnaires from all drivers; fleet management surveys from each company; and focus group results collected from 14 drivers during two post-study focus group sessions. The focus of this report is the description of the data collection procedures.
- Review of user interface devices for ambient assisted living smart homes for older peopleO’Mullane, Brian A.; Knapp, R. Benjamin; Bond, Rod (International Society for Gerontechnology, 2010)Smart homes generally focus on issues to do with security, health, energy savings and entertainment, issues which grow in importance as we age. The sensors, actuators and entertainment devices required to build such a system add significantly to its complexity. Hence, the Man-Machine Interface (MMI) to the smart home systems is often acknowledged to be the most sensitive area for acceptance. Smart homes can allow the user modify the house via a unified control, additionally assisted living smart homes gather information about the subjects health, information that can be used to feedback to the user to modify their behaviour via the device. Increasingly these interface device present information from the internet, such as weather and news. With the internet fast becoming the first source of information for many services, such as shopping, or care workers access, these devices may additionally help bridge the digital divide between the young and old(²), if the principles of universal design are addressed(³)(⁴). The purpose of this study is to examine user interfaces devices that can perform these tasks and analyse them with regard to the particular requirements of the older user.
- Control-Oriented Planar Motion Modeling of Unmanned Surface VehiclesSonnenburg, C.; Gadre, Aditya; Horner, D.; Krageland, S.; Marcus, A.; Stilwell, Daniel J.; Woolsey, Craig A. (Virginia Center for Autonomous Systems, 2010)This technical report describes a comparison of experimentally identified dynamic models for the planar motion of an unmanned surface vehicle (USV). The objective is to determine a model which is (1) sufficiently rich to enable effective model-based control design, (2) sufficiently simple to allow straight forward parameter identification, and (3) sufficiently general to apply to a variety of hullforms and actuator configurations. Starting from a three degree-of-freedom nonlinear model obtained from physical principles, we consider five simplified variants that include four linear models and two nonlinear models for low speed operation. The first linear model comes from linearizing the full planar boat dynamics about a straight constant speed. A first order steering model relates steering angle to turn rate. A second order steering model relates steering angle to turn rate and sideslip angle. A first order speed model relates throttle setting to forward speed. The two nonlinear models are derived from potential flow around a simple shape. Linear damping and quadratic damping are included in each nonlinear model respectively. To identify parameters for these models, data must be collected that show the dynamic and steady-state relationships between inputs and outputs. Using these data sets, simple models that satisfy the three given criteria are identified for three types of unmanned surface vehicle: a rigid hull inflatable boat with an outboard engine, a rigid hull inflatable boat with a waterjet propulsion system, and a small pontoon boat with two electric thrusters.
- Dynamics & Control of Underwater Gliders II: Motion Planning and ControlMahmoudian, N.; Woolsey, Craig A. (Virginia Center for Autonomous Systems, 2010)This paper describes an underwater glider motion control system intended to enhance locomotive efficiency by reducing the energy expended by vehicle guidance and control. In previous work, the authors derived an approximate analytical expression for steady turning motion by applying regular perturbation theory to a sophisticated vehicle dynamic model. Using these steady turn solutions, including the special case of wings level glides, one may construct feasible paths for the gliders to follow. Because the turning motion results are only approximate, however, and to compensate for model and environmental uncertainty, one must incorporate feedback to ensure precise path following. This report describes the development and numerical implementation of a feedforward/feedback motion control system for a multi-body underwater glider model. Since the motion control system relies largely on steady motions, it is intrinsically efficient. Moreover, the nature of the steady turn approximations suggests a method for nearly energy-optimal path planning.
- Synchronization challenges in media access coordination for vehicular ad hoc networksBlum, Jeremy; Natarajan, Rajesh; Eskandarian, Azim (Wiley, 2010-01-18)Vehicular ad hoc networks (VANETs) can support a wide range of future cooperative safety and efficiency applications. However, the node density and high demand for wireless media in these networks can lead to the Timeslot Boundary Synchronization Problem, in which increased transmission collisions occur due to back-off timer synchronization. This paper proposes an enhancement to the wireless access in vehicular environments (WAVE) communications architecture to address this problem, called RAndom Propagation Initiation Delay for the Distributed Coordination Function (RAPID DCF). The effectiveness of RAPID DCF is evaluated through simulations of both single-hop and multi-hop emergency messages. In these simulations, RAPID DCF was able to improve message delivery rates by as much as 35% and reduce multi-hop message latency by as much as 18%.
- Human Performance Evaluation of Light Vehicle Brake Assist SystemsFitch, Gregory M.; Blanco, Myra; Morgan, Justin F.; Rice, Jeanne C.; Wharton, Amy E.; Wierwille, Walter W.; Hanowski, Richard J. (United States. National Highway Traffic Safety Administration, 2010-04)The Brake Assist System (BAS) is a safety feature that supplements drivers' inadequate braking force during panic braking maneuvers upon the detection of a rapid brake pedal application. This report presents an evaluation of drivers' panic braking performance using BAS. Two vehicles with electronic BASs were selected: a 2006 Mercedes-Benz R350 and a 2007 Volvo S80. Sixty-four participants, balanced for age and gender, drove one of the instrumented vehicles at 45 mph and stopped at an unexpected barricade. Following debriefing, drivers performed another braking maneuver at the barricade, were shown how to perform a hard stop, and performed hard-braking maneuvers in which BAS was either enabled or disabled. Twenty-eight percent of drivers activated BAS subsequent to the demonstration. In the most conservative analysis, where the effect of BAS activation was isolated from driver panic-braking variability, it was found that BAS-active stopping distances were on average 1.43 ft (s.e. = 1.19 ft) shorter than BAS-disabled stopping distances. Yet, two drivers, who differed in age, sex, and vehicle driven, exhibited reductions in stopping distance exceeding 10 ft. Overall, the as-tested BAS has potential safety benefit that could be accrued from reduced stopping distance, but were not realized in this evaluation. Moreover, BAS implementations that do not completely rely on the driver may offer greater safety benefits.
- Vehicle Dynamics in CurrentsWoolsey, Craig A. (Virginia Center for Autonomous Systems, 2011)Vehicles operating in non-uniform flow fields are subject to forces and moments that are not captured by kinematic motion models. These effects are even greater when the mass of the displaced fluid is commensurate with the mass of the vehicle, as is the case for maritime vehicles and airships. Following along the lines of a recent paper by Thomasson, this report presents a dynamic model for the motion of a rigid vehicle in a non-uniform flow. The flow field is assumed to be irrotational, comprising a steady, non-uniform component and an unsteady, uniform component. As Thomasson suggests, rotational flow effects can be incorporated by modifying the vehicle's angular rate when computing viscous forces and moments. These equations have a variety of applications for modeling, simulation, and design, a few of which are listed at the end of the report.
- A collaboration workflow from sound-based composition to performance of electroacoustic music using «Pure Data» as a frameworkTsoukalas, Kyriakos D. (Bauhaus Universitat Weimer, 2011-08)This paper describes a workflow for composers, engineers and performers to collaborate, using Pure Data (PD) as a framework, towards the design of electroacoustic musical instruments intended for live performances of sound-based music. Furthermore, it presents some considerations about live performance and ideas of creating collaboration tools, possibly as PD GUI plugins.
- Evaluation of Resiliency of Transportation Networks After DisastersFreckleton, Derek; Heaslip, Kevin Patrick; Louisell, William; Collura, John (The National Academies of Sciences, Engineering, and Medicine, 2012)The resiliency of infrastructure, particularly as related to transportation networks, is essential to any society. This resiliency is especially vital in the aftermath of disasters. Recent events around the globe, including Hurricane Katrina and significant seismic events in Haiti, Chile, and Japan, have increased the awareness and the importance of resiliency. Transportation systems are key to response and recovery. These systems must withstand stress, maintain baseline service levels, and be stout enough in physical design and operational concept to provide restoration to the system. Analysis of a transportation network’s resiliency before a disruptive event will help decision makers identify specific weaknesses within the network so that investments and improvement projects are prioritized appropriately. Previous research in quantification of network resiliency was expanded into a proposed methodology, through which understanding and applying concepts of network resiliency could preclude many devastating effects of destabilizing events and preserve the quality of life and economic stability.
- Sensing and Autonomy for Riverine VesselsStilwell, Daniel J.; Woolsey, Craig A. (Defense Technical Information Center, 2012)The principal goal of this project is to develop the technology and algorithms that will enable an unmanned surface vehicle (USV) to operate fast and autonomously in unknown riverine environments, including tropical rivers. Robust autonomy requires that the USV senses the surface and subsurface environments, discriminates waterways that are navigable from those that are not, identifies stationary and moving obstacles, including other vessels, and then optimally plans and re-plans a route in realtime. Since speed is a vessel’s principal defense, all of these tasks must be done as efficiently as possible to ensure successful operation at the greatest possible speed. This project is tightly coordinated with collaborators at the Naval Postgraduate School (NPS) whose work is conducted under a related project.
- AERIS : Eco-Vehicle Speed Control at Signalized Intersections Using I2V CommunicationRakha, Hesham A.; Kamalanathsharma, Raj Kishore; Ahn, Kyoungho (United States. Joint Program Office for Intelligent Transportation Systems, 2012-06)This report concentrates on a velocity advisory tool, or decision support system, for vehicles approaching an intersection using communication capabilities between the infrastructure and vehicles. The system uses available signal change information, vehicle characteristics, lead vehicle characteristics, and intersection features to compute the fuel-optimal vehicle trajectory. The proposed system involves a complex optimization logic incorporating roadway characteristics, lead vehicle information, vehicle acceleration capabilities and microscopic fuel consumption models to generate a fuel-optimal speed profile. The research also develops a MATLAB application in order to demonstrate the potential of an in-vehicle application of such a technology.