Scholarly Works, Global Change Center
Permanent URI for this collection
Browse
Browsing Scholarly Works, Global Change Center by Issue Date
Now showing 1 - 20 of 45
Results Per Page
Sort Options
- Coupled Human-Natural Modeling for Hydroelectric Development: Understanding the Health Impacts of America’s Renewable Energy ImportsCalder, Ryan S. D. (Duke University, 2019)Hydropower accounts for 71% of renewable electrical generation worldwide, and installed capacity may more than double by 2050. Major hydroelectric projects involve construction of reservoirs to buffer the periodicity of river discharge, meaning hydropower typically does not suffer from supply intermittency of other renewables such as wind and solar. Meanwhile, average greenhouse gas emissions are likely substantially lower than fossil fuel alternatives per unit energy produced. Domestic hydropower production in the United States is unlikely to increase substantially in the foreseeable future, but imports from Canada play an increasingly important role in achieving renewable energy targets in northern U.S. markets....
- Risk tradeoffs associated with traditional food advisories for Labrador InuitCalder, Ryan S. D.; Bromage, Sabri; Sunderland, Elsie M. (Elsevier, 2019-01-01)The traditional Inuit diet includes wild birds, fish and marine mammals, which can contain high concentrations of the neurotoxicant methylmercury (MeHg). Hydroelectric development may increase MeHg concentrations in traditional foods. Consumption advisories are often used to mitigate such risks and can result in reduced intake of traditional foods. Data from a dietary survey, MeHg exposure assessment and risk analysis for individuals in three Inuit communities in Labrador, Canada (n = 1145) in 2014 indicate reducing traditional food intake is likely to exacerbate deficiencies in n-3 polyunsaturated fatty acids and vitamins B12 and B2. Traditional foods accounted for < 5% of per-capita calories but up to 70% of nutrients consumed. Although consumption advisories could lower neurodevelopmental risks associated with an increase in MeHg exposure (90th-percentile ∆IQ = − 0.12 vs. − 0.34), they may lead to greater risks of cardiovascular mortality (90th-percentile increase: + 58% to + 116% vs. + 25%) and cancer mortality (90th-percentile increase + 2% to + 4% vs. no increase). Conversely, greater consumption of locally caught salmon mostly unaffected by hydroelectric flooding would lower all these risks (90th-percentile ∆IQ = + 0.4; cardiovascular risk: − 45%; cancer risk: − 1.4%). We thus conclude that continued consumption of traditional foods is essential for Inuit health in these communities.
- Linked within-host and between-host models and data for infectious diseases: a systematic reviewChilds, Lauren M.; El Moustaid, Fadoua; Gajewski, Zachary J.; Kadelka, Sarah; Nikin-Beers, Ryan; Smith, John W. Jr.; Walker, Melody; Johnson, Leah R. (PeerJ, 2019-06-19)The observed dynamics of infectious diseases are driven by processes across multiple scales. Here we focus on two: within-host, that is, how an infection progresses inside a single individual (for instance viral and immune dynamics), and between-host, that is, how the infection is transmitted between multiple individuals of a host population. The dynamics of each of these may be influenced by the other, particularly across evolutionary time. Thus understanding each of these scales, and the links between them, is necessary for a holistic understanding of the spread of infectious diseases. One approach to combining these scales is through mathematical modeling. We conducted a systematic review of the published literature on multi-scale mathematical models of disease transmission (as defined by combining within-host and between-host scales) to determine the extent to which mathematical models are being used to understand across-scale transmission, and the extent to which these models are being confronted with data. Following the PRISMA guidelines for systematic reviews, we identified 24 of 197 qualifying papers across 30 years that include both linked models at the within and between host scales and that used data to parameterize/calibrate models. We find that the approach that incorporates both modeling with data is under-utilized, if increasing. This highlights the need for better communication and collaboration between modelers and empiricists to build well-calibrated models that both improve understanding and may be used for prediction.
- Spiculogenesis and biomineralization in early sponge animalsTang, Qing; Wan, Bin; Yuan, Xunlai; Muscente, A. D.; Xiao, Shuhai (Springer Nature, 2019-07-26)Most sponges have biomineralized spicules. Molecular clocks indicate sponge classes diverged in the Cryogenian, but the oldest spicules are Cambrian in age. Therefore, sponges either evolved spiculogenesis long after their divergences or Precambrian spicules were not amenable to fossilization. The former hypothesis predicts independent origins of spicules among sponge classes and presence of transitional forms with weakly biomineralized spicules, but this prediction has not been tested using paleontological data. Here, we report an early Cambrian sponge that, like several other early Paleozoic sponges, had weakly biomineralized and hexactine-based siliceous spicules with large axial filaments and high organic proportions. This material, along with Ediacaran microfossils containing putative non-biomineralized axial filaments, suggests that Precambrian sponges may have had weakly biomineralized spicules or lacked them altogether, hence their poor record. This work provides a new search image for Precambrian sponge fossils, which are critical to resolving the origin of sponge spiculogenesis and biomineralization.
- Aligning evidence generation and use across health, development, and environmentTallis, Heather; Kreis, Katharine; Olander, Lydia P.; Ringler, Claudia; Ameyaw, David; Borsuk, Mark E.; Fletschner, Diana; Game, Edward; Gilligan, Daniel O.; Jeuland, Marc; Kennedy, Gina; Masuda, Yuta J.; Mehta, Sumi; Miller, Nicholas; Parker, Megan; Pollino, Carmel; Rajaratnam, Julie; Wilkie, David; Zhang, Wei; Ahmed, Selena; Ajayi, Oluyede C.; Alderman, Harold; Arhonditsis, George; Azevedo, Ines; Badola, Ruchi; Bailis, Rob; Balvanera, Patricia; Barbour, Emily; Bardini, Mark; Barton, David N.; Baumgartner, Jill; Benton, Tim G.; Bobrow, Emily; Bossio, Deborah; Bostrom, Ann; Braimoh, Ademola; Brondizio, Eduardo; Brown, Joe; Bryant, Benjamin P.; Calder, Ryan S. D.; Chaplin-Kramer, Becky; Cullen, Alison; DeMello, Nicole; Dickinson, Katherine L.; Ebi, Kristie L.; Eves, Heather E.; Fanzo, Jessica; Ferraro, Paul J.; Fisher, Brendan; Frongillo, Edward A.; Galford, Gillian; Garrity, Dennis; Gatere, Lydiah; Grieshop, Andrew P.; Grigg, Nicola J.; Groves, Craig; Gugerty, Mary Kay; Hamm, Michael; Hou, Xiaoyue; Huang, Cindy; Imhoff, Marc; Jack, Darby; Jones, Andrew D.; Kelsey, Rodd; Kothari, Monica; Kumar, Ritesh; Lachat, Carl; Larsen, Ashley E.; Lawrence, Mark; DeClerck, Fabrice; Levin, Phillip S.; Mabaya, Edward; Gibson, Jacqueline MacDonald; McDonald, Robert; Mace, Georgina; Maertens, Ricardo; Mangale, Dorothy; Martino, Robin; Mason, Sara A.; Mehta, Lyla; Meinzen-Dick, Ruth; Merz, Barbara; Msangi, Siwa; Murray, Grant; Murray, Kris A.; Naude, Celeste E.; Newlands, Nathaniel K.; Nkonya, Ephraim; Peterman, Amber; Petruney, Tricia; Possingham, Hugh; Puri, Jyotsna; Remans, Roseline; Remlinger, Lisa; Ricketts, Taylor H.; Reta, Bedilu; Robinson, Brian E.; Roe, Dilys; Rosenthal, Joshua; Shen, Guofeng; Shindell, Drew; Stewart-Koster, Ben; Sunderland, Terry; Sutherland, William J.; Tewksbury, Joshua; Wasser, Heather; Wear, Stephanie; Webb, Chris; Whittington, Dale; Wilkerson, Marit; Wittmer, Heidi; Wood, Benjamin DK K.; Wood, Stephen; Wu, Joyce; Yadama, Gautam; Zobrist, Stephanie (Elsevier, 2019-08-01)Although health, development, and environment challenges are interconnected, evidence remains fractured across sectors due to methodological and conceptual differences in research and practice. Aligned methods are needed to support Sustainable Development Goal advances and similar agendas. The Bridge Collaborative, an emergent research-practice collaboration, presents principles and recommendations that help harmonize methods for evidence generation and use. Recommendations were generated in the context of designing and evaluating evidence of impact for interventions related to five global challenges (stabilizing the global climate, making food production sustainable, decreasing air pollution and respiratory disease, improving sanitation and water security, and solving hunger and malnutrition) and serve as a starting point for further iteration and testing in a broader set of contexts and disciplines. We adopted six principles and emphasize three methodological recommendations: (1) creation of compatible results chains, (2) consideration of all relevant types of evidence, and (3) evaluation of strength of evidence using a unified rubric. We provide detailed suggestions for how these recommendations can be applied in practice, streamlining efforts to apply multi-objective approaches and/or synthesize evidence in multidisciplinary or transdisciplinary teams. These recommendations advance the necessary process of reconciling existing evidence standards in health, development, and environment, and initiate a common basis for integrated evidence generation and use in research, practice, and policy design.
- Forecasting ecosystem services to guide coastal wetland rehabilitation decisionsCalder, Ryan S. D.; Shi, Congjie; Mason, Sara A.; Olander, Lydia P.; Borsuk, Mark E. (Elsevier, 2019-10-01)Coastal wetlands provide diverse ecosystem services such as flood protection and recreational value. However, predicting changes in ecosystem service value fr0k from restoration or management is challenging because environmental systems are highly complex and uncertain. Furthermore, benefits are diverse and accrue over various timescales. We developed a generalizable mathematical coastal management model to compare restoration expenditures to ecosystem service benefits and apply it to McInnis Marsh, Marin County, California, USA. We find that benefits of restoration outweigh costs for a wide range of assumptions. For instance, costs of restoration range from 8–30% of the increase in ecosystem service value over 50 years depending on discount rate. Flood protection is the dominant monetized service for most payback periods and discount rates, but other services (e.g., recreation) dominate on shorter timescales (>50% of total value for payback periods ≤4 years). We find that the range of total ecosystem service value is narrower than overall variability reported in the literature, supporting the use of mechanistic methods in decision-making around coastal resiliency. However, the magnitude and relative importance of ecosystem services are sensitive to payback period, discount rate and risk tolerance, demonstrating the importance of probabilistic decision analysis. This work provides a modular, transferrable tool to that can also inform coastal resiliency investments elsewhere.
- Modeling Temperature Effects on Population Density of the Dengue Mosquito Aedes aegyptiEl Moustaid, Fadoua; Johnson, Leah R. (MDPI, 2019-11-07)Mosquito density plays an important role in the spread of mosquito-borne diseases such as dengue and Zika. While it remains very challenging to estimate the density of mosquitoes, modelers have tried different methods to represent it in mathematical models. The goal of this paper is to investigate the various ways mosquito density has been quantified, as well as to propose a dynamical system model that includes the details of mosquito life stages leading to the adult population. We first discuss the mosquito traits involved in determining mosquito density, focusing on those that are temperature dependent. We evaluate different forms of models for mosquito densities based on these traits and explore their dynamics as temperature varies. Finally, we compare the predictions of the models to observations of Aedes aegypti abundances over time in Vitòria, Brazil. Our results indicate that the four models exhibit qualitatively and quantitatively different behaviors when forced by temperature, but that all seem reasonably consistent with observed abundance data.
- Graphical models and the challenge of evidence-based practice in development and sustainabilityCalder, Ryan S. D.; Alatorre, Andrea; Marx, Rebecca S.; Mallampalli, Varun; Mason, Sara A.; Olander, Lydia P.; Jeuland, Marc; Borsuk, Mark E. (Elsevier, 2020-08-01)Governments and social benefit organizations are expected to consider evidence in decision-making. In development and sustainability, evidence spans disciplines and methodological traditions and is often inconclusive. Graphical models are widely promoted to organize interdisciplinary evidence and improve decision-making by considering mediating variables. However, the reproducibility, objectivity and benefits for decision-making of graphical models have not been studied. We evaluate these considerations in the setting of energy services in the developing world, a contemporary development and sustainability imperative. We develop a database of relevant causal relations (313 concepts, 1337 relationships) asserted in the literature (561 peer-reviewed articles). We demonstrate that high-level relationships of interest to practitioners feature less consistent evidence than the causal relationships that underpin them, supporting increased use of problem decomposition through graphical modeling approaches. However, adding such detail increases complexity exponentially, introducing a hazard of overparameterization if evidence is not available to match the level of mechanistic detail.
- Analysis of environmental and economic impacts of hydropower imports for New York City through 2050Calder, Ryan S. D.; Borsuk, Mark E.; Robinson, Celine (Duke University Nicholas Institute for Environmental Policy Solutions, 2020-10-13)Indian Point Energy Center (IPEC), a nuclear generating facility that has provided roughly 15 TW·h per year of low-emissions power to the New York City area, will close by 2021. There has been debate over the potential responses to the closure of IPEC which include the development of new generation and transmission infrastructure. This derives in part from difficulties in comparing direct and indirect costs and benefits and environmental and social impacts, which vary substantially across energy alternatives. In particular, the potential role of increased imports of hydropower from Canada to the New York City area has been controversial because of large upfront capital costs and uncertain benefits relative to alternatives such as increased build-out of Downstate New York offshore wind and solar.
- COVID-19 Reveals Vulnerabilities of the Food–Energy–Water Nexus to Viral PandemicsCalder, Ryan S. D.; Grady, Caitlin; Jeuland, Marc; Kirchhoff, Christine J.; Hale, Rebecca L.; Muenich, Rebecca L. (American Chemical Society, 2021)Food, energy, and water (FEW) sectors are inextricably linked, making one sector vulnerable to disruptions in another. Interactions between FEW systems, viral pandemics, and human health have not been widely studied. We mined scientific and news/media articles for causal relations among FEW and COVID-19 variables and qualitatively characterized system dynamics. Food systems promoted the emergence and spread of COVID-19, leading to illness and death. Major supply-side breakdowns were avoided (likely due to low morbidity/mortality among working-age people). However, COVID-19 and physical distancing disrupted labor and capital inputs and stressed supply chains, while creating economic insecurity among the already vulnerable poor. This led to demand-side FEW insecurities, in turn increasing susceptibility to COVID-19 among people with many comorbidities. COVID-19 revealed trade-offs such as allocation of water to hygiene versus to food production and disease burden avoided by physical distancing versus disease burden from increased FEW insecurities. News/media articles suggest great public interest in FEW insecurities triggered by COVID-19 interventions among individuals with low COVID-19 case-fatality rates. There is virtually no quantitative analysis of any of these trade-offs or feedbacks. Enhanced quantitative FEW and health models are urgently needed as future pandemics are likely and may have greater morbidity and mortality than COVID-19.
- Predicting temperature-dependent transmission suitability of bluetongue virus in livestockEl Moustaid, Fadoua; Thornton, Zorian; Slamani, Hani; Ryan, Sadie J.; Johnson, Leah R. (2021-07-30)The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vector–host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy of affected countries. Using modeling tools, we seek to predict where the transmission can occur based on suitable temperatures for BTV. We fit thermal performance curves to temperature-sensitive midge life-history traits, using a Bayesian approach. We incorporate these curves into S(T), a transmission suitability metric derived from the disease’s basic reproductive number, 𝑅0. This suitability metric encompasses all components that are known to be temperature-dependent. We use trait responses for two species of key midge vectors, Culicoides sonorensis and Culicoides variipennis present in North America. Our results show that outbreaks of BTV are more likely between 15∘ C and 34∘ C, with predicted peak transmission risk at 26 ∘ C. The greatest uncertainty in S(T) is associated with the following: the uncertainty in mortality and fecundity of midges near optimal temperature for transmission; midges’ probability of becoming infectious post-infection at the lower edge of the thermal range; and the biting rate together with vector competence at the higher edge of the thermal range. We compare three model formulations and show that incorporating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this modeling approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to assess risk and to anticipate potential locations of disease establishment.
- A Landscape Epidemiological Approach for Predicting Chronic Wasting Disease: A Case Study in Virginia, USWinter, Steven N.; Kirchgessner, Megan S.; Frimpong, Emmanuel A.; Escobar, Luis E. (2021-08-24)Many infectious diseases in wildlife occur under quantifiable landscape ecological patterns useful in facilitating epidemiological surveillance and management, though little is known about prion diseases. Chronic wasting disease (CWD), a fatal prion disease of the deer family Cervidae, currently affects white-tailed deer (Odocoileus virginianus) populations in the Mid-Atlantic United States (US) and challenges wildlife veterinarians and disease ecologists from its unclear mechanisms and associations within landscapes, particularly in early phases of an outbreak when CWD detections are sparse. We aimed to provide guidance for wildlife disease management by identifying the extent to which CWD-positive cases can be reliably predicted from landscape conditions. Using the CWD outbreak in Virginia, US from 2009 to early 2020 as a case study system, we used diverse algorithms (e.g., principal components analysis, support vector machines, kernel density estimation) and data partitioning methods to quantify remotely sensed landscape conditions associated with CWD cases. We used various model evaluation tools (e.g., AUC ratios, cumulative binomial testing, Jaccard similarity) to assess predictions of disease transmission risk using independent CWD data. We further examined model variation in the context of uncertainty. We provided significant support that vegetation phenology data representing landscape conditions can predict and map CWD transmission risk. Model predictions improved when incorporating inferred home ranges instead of raw hunter-reported coordinates. Different data availability scenarios identified variation among models. By showing that CWD could be predicted and mapped, our project adds to the available tools for understanding the landscape ecology of CWD transmission risk in free-ranging populations and natural conditions. Our modeling framework and use of widely available landscape data foster replicability for other wildlife diseases and study areas.
- Editorial: Disease Ecology and BiogeographyEscobar, Luis E.; Morand, Serge (Frontiers, 2021-10-29)
- The Influence of Southwestern Virginia Environmental Conditions on the Potential Ability of Haemaphysalis longicornis, Amblyomma americanum, and Amblyomma maculatum to Overwinter in the RegionWhitlow, Amanda Marie; Schürch, Roger; Mullins, Donald E.; Eastwood, Gillian (MDPI, 2021-11-06)Ticks are susceptible to environmental conditions and, to ensure survival during winter conditions, they adopt a wide variety of physiological and behavioral adaptations including utilization of a suitable niche with insulation (e.g., leaf coverage). To investigate the potential overwintering survival of three tick populations emerging within Appalachian Virginia (Haemaphysalis longicornis, Amblyomma americanum, and Amblyomma maculatum), both a laboratory experiment assessing super-cooling points and a two-factor (elevation and insulation coverage) field experiment assessing overwintering survivability were conducted across a natural southwestern Virginian winter (2020–2021). Dermacentor variabilis adults were included in this study as an example of a well-established species in this region known to overwinter in these conditions. Our study indicated that A. americanum and H. longicornis wintering tolerance is based on life stage rather than external factors such as insulation (e.g., leaf litter) and elevation. Amblyomma maculatum was more likely to survive without insulation. The ability to withstand the extreme temperatures of new regions is a key factor determining the survivability of novel tick species and is useful in assessing the invasion potential of arthropod vectors.
- Horsenettle (Solanum carolinense) fruit bacterial communities are not variable across fine spatial scalesHeminger, Ariel R.; Belden, Lisa K.; Barney, Jacob N.; Badgley, Brian D.; Haak, David C. (PeerJ, 2021-11-08)Fruit house microbial communities that are unique from the rest of the plant. While symbiotic microbial communities complete important functions for their hosts, the fruit microbiome is often understudied compared to other plant organs. Fruits are reproductive tissues that house, protect, and facilitate the dispersal of seeds, and thus they are directly tied to plant fitness. Fruit microbial communities may, therefore, also impact plant fitness. In this study, we assessed how bacterial communities associated with fruit of Solanum carolinense, a native herbaceous perennial weed, vary at fine spatial scales (<0.5 km). A majority of the studies conducted on plant microbial communities have been done at large spatial scales and have observed microbial community variation across these large spatial scales. However, both the environment and pollinators play a role in shaping plant microbial communities and likely have impacts on the plant microbiome at fine scales. We collected fruit samples from eight sampling locations, ranging from 2 to 450 m apart, and assessed the fruit bacterial communities using 16S rRNA gene amplicon sequencing. Overall, we found no differences in observed richness or microbial community composition among sampling locations. Bacterial community structure of fruits collected near one another were not more different than those that were farther apart at the scales we examined. These fine spatial scales are important to obligate out-crossing plant species such as S. carolinense because they are ecologically relevant to pollinators. Thus, our results could imply that pollinators serve to homogenize fruit bacterial communities across these smaller scales.
- A database of global coastal conditionsCastaneda-Guzman, Mariana; Mantilla-Saltos, Gabriel; Murray, Kris A.; Settlage, Robert; Escobar, Luis E. (2021-11-26)Remote sensing satellite imagery has the potential to monitor and understand dynamic environmental phenomena by retrieving information about Earth's surface. Marine ecosystems, however, have been studied with less intensity than terrestrial ecosystems due, in part, to data limitations. Data on sea surface temperature (SST) and Chlorophyll-a (Chlo-a) can provide quantitative information of environmental conditions in coastal regions at a high spatial and temporal resolutions. Using the exclusive economic zone of coastal regions as the study area, we compiled monthly and annual statistics of SST and Chlo-a globally for 2003 to 2020. This ready-to-use dataset aims to reduce the computational time and costs for local-, regional-, continental-, and global-level studies of coastal areas. Data may be of interest to researchers in the areas of ecology, oceanography, biogeography, fisheries, and global change. Target applications of the database include environmental monitoring of biodiversity and marine microorganisms, and environmental anomalies.
- Life Cycle Impact Assessment of Iron Oxide (Fe3O4/γ-Fe2O3) Nanoparticle Synthesis RoutesRahman, Asifur; Kang, Seju; McGinnis, Sean; Vikesland, Peter J. (2022)The synthesis of superparamagnetic iron oxide nanoparticles (FeOx-NPs) has rapidly developed over the past decade due to their wide-ranging applications in research and technology. However, at present there exists very limited knowledge about the environmental impacts of the various input materials and the energy required for different FeOx-NP synthesis approaches. In this study, we used cradle-to-gate life cycle assessment (LCA) to analyze and compare the environmental impacts of FeOx-NPs produced via seven common synthesis routes. Four different functional units (i.e., mass, mean particle size, specific surface area, and saturation magnetization) were used to normalize the environmental impacts and evaluate the corresponding changes. Overall, physical and biological synthesis routes exhibited high environmental impacts due to their higher input material and energy requirements. Interestingly, biological syntheses had the highest environmental impacts due to their reliance on bacterial culture media. All of the chemical synthesis routes had lower environmental impacts except the thermal decomposition method, which had higher environmental impacts due its use of non-polar organic solvents during synthesis. The lab-scale LCA inventory data and analysis presented here addresses the existing data gaps and helps guide future research for FeOx-NP synthesis under industrial conditions. The information generated by this effort aids in the identification of environmentally friendly and sustainable production pathways for FeOx-NPs.
- Bankfull shear velocity predicts embeddedness and silt cover in gravel streambedsCzuba, Jonathan A.; Hirschler, Mallory; Pratt, Elizabeth A.; Villamagna, Amy; Angermeier, Paul L. (Wiley, 2022-01)Excess fine sediment (<2 mm) deposition on gravel streambeds can degrade habitat quality for stream biota. Two measures of fine sediment deposition include embeddedness and silt cover (<62.5 mu m). Embeddedness measures fine sediment in interstitial pore spaces, whereas silt cover, primarily deposited during low flows, measures fine sediment draped on the streambed's surface. Here, we demonstrate that a baseline level of embeddedness and a maximum value of silt cover can be predicted from bankfull shear velocity, which can be estimated from river channel and streamflow characteristics, independently of knowing the sediment supply. We derive an equation for bankfull shear velocity that only requires knowing bankfull flow, channel width, and channel slope, which can be readily obtained in the United States from freely available, remotely sensed data. We apply this methodology to data collected at 30 sites in the Piedmont region of Virginia and North Carolina. This work is an important step in developing statistical models of stream ecosystems in which geophysical variables can predict embeddedness and silt cover, which commonly limit biotic assemblages.
- Species-Specificity in Thermopreference and CO2-Gated Heat-Seeking in Culex MosquitoesReinhold, Joanna M.; Chandrasegaran, Karthikeyan; Oker, Helen; Crespo, José E.; Vinauger, Clément; Lahondère, Chloé (MDPI, 2022-01-14)Combining thermopreference (Tp) and CO2-gated heat-seeking assays, we studied the thermal preferendum and response to thermal cues in three Culex mosquito species exhibiting differences in native habitat and host preference (e.g., biting cold and/or warm-blooded animals). Results show that these species differ in both Tp and heat-seeking behavior. In particular, we found that Culex territans, which feed primarily on cold-blood hosts, did not respond to heat during heat-seeking assays, regardless of the CO2 concentration, but exhibited an intermediate Tp during resting. In contrast, Cx. quinquefasciatus, which feeds on warm blooded hosts, sought the coolest locations on a thermal gradient and responded only moderately to thermal stimuli when paired with CO2 at higher concentrations. The third species, Cx. tarsalis, which has been shown to feed on a wide range of hosts, responded to heat when paired with high CO2 levels and exhibited a high Tp. This study provides the first insights into the role of heat and CO2 in the host seeking behavior of three disease vectors in the Culex genus and highlights differences in preferred resting temperatures.
- A database of common vampire bat reportsvan de Vuurst, Paige; Diaz, M. Monica; Rodriguez-San Pedro, Annia; Allendes, Juan Luis; Brown, Natalie; Gutierrez, Juan David; Zarza, Heliot; de Oliveira, Stefan V.; Cardenas-Canales, Elsa; Barquez, Ruben M.; Escobar, Luis E. (Nature Portfolio, 2022-02-16)The common vampire bat (Desmodus rotundus) is a sanguivorous (i.e., blood-eating) bat species distributed in the Americas from northern Mexico southwards to central Chile and Argentina. Desmodus rotundus is one of only three mammal species known to feed exclusively on blood, mainly from domestic mammals, although large wildlife and occasionally humans can also serve as a food source. Blood feeding makes D. rotundus an effective transmissor of pathogens to its prey. Consequently, this species is a common target of culling efforts by various individuals and organizations. Nevertheless, little is known about the historical distribution of D. rotundus. Detailed occurrence data are critical for the accurate assessment of past and current distributions of D. rotundus as part of ecological, biogeographical, and epidemiological research. This article presents a dataset of D. rotundus historical occurrence reports, including >39,000 locality reports across the Americas to facilitate the development of spatiotemporal studies of the species. Data are available at https://doi.org/10.6084/ m9.figshare.15025296.
- «
- 1 (current)
- 2
- 3
- »