College of Liberal Arts and Human Sciences (CLAHS)
Permanent URI for this community
The College of Liberal Arts and Human Sciences includes the arts, humanities, social and human sciences, and education. The College nurtures intellect and spirit, enlightens decision-making, inspires positive change, and improves the quality of life for people of all ages.
Browse
Browsing College of Liberal Arts and Human Sciences (CLAHS) by Department "Center for Coastal Studies"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Addressing the Contribution of Indirect Potable Reuse to Inland Freshwater SalinizationBhide, Shantanu V.; Grant, Stanley B.; Parker, Emily A.; Rippy, Megan A.; Godrej, Adil N.; Kaushal, Sujay S.; Prelewicz, Gregory; Saji, Niffy; Curtis, Shannon; Vikesland, Peter J.; Maile-Moskowitz, Ayella; Edwards, Marc A.; Lopez, Kathryn; Birkland, Thomas A.; Schenk, Todd (2021-02-02)Inland freshwater salinity is rising worldwide, a phenomenon called the freshwater salinization syndrome (FSS). We investigate a potential conflict between managing the FSS and indirect potable reuse, the practice of augmenting water supplies through the addition of reclaimed wastewater to surface waters and groundwaters. From time-series data collected over 25 years, we quantify the contributions of three salinity sources—a wastewater reclamation facility and two rapidly urbanizing watersheds—to the rising concentration of sodium (a major ion associated with the FSS) in a regionally important drinking water reservoir in the Mid-Atlantic United States. Sodium mass loading to the reservoir is primarily from watershed runoff during wet weather and reclaimed wastewater during dry weather. Across all timescales evaluated, sodium concentration in the reclaimed wastewater is higher than in outflow from the two watersheds. Sodium in reclaimed wastewater originates from chemicals added during wastewater treatment, industrial and commercial discharges, human excretion, and down-drain disposal of drinking water and sodium-rich household products. Thus, numerous opportunities exist to reduce the contribution of indirect potable reuse to sodium pollution at this site, and the FSS more generally. These efforts will require deliberative engagement with a diverse community of watershed stakeholders and careful consideration of the local political, social, and environmental context.
- Considering COVID-19 through the Lens of Hazard and Disaster ResearchRitchie, Liesel A.; Gill, Duane A. (MDPI, 2021-06-30)Decades of social science research have taught us much about how individuals, groups, and communities respond to disasters. The findings of this research have helped inform emergency management practices, including disaster preparedness, response, recovery, and mitigation. In the context of the COVID-19 pandemic, most of us—researchers or not—have attempted or are attempting to make sense of what is going on around us. In this article, we assert that we need not examine the pandemic in a vacuum; rather, we can draw upon scholarly and practical sources to inform our thinking about this 21st century catastrophe. The pandemic has provided an “unfortunate opportunity” to revisit what we know about disaster phenomena, including catastrophes, and to reconsider the findings of research from over the years. Drawing upon academic research, media sources, and our own observations, we focus on the U.S. and employ disaster characteristics framework of (1) etiology or origins; (2) physical damage characteristics; (3) disaster phases or cycles; (4) vulnerability; (5) community impacts; and (6) individual impacts to examine perspectives about the ways in which the ongoing pandemic is both similar and dissimilar to conceptualizations about the social dimensions of hazards and disasters. We find that the COVID-19 pandemic is not merely a disaster; rather, it is a catastrophe.