College of Liberal Arts and Human Sciences (CLAHS)
Permanent URI for this community
The College of Liberal Arts and Human Sciences includes the arts, humanities, social and human sciences, and education. The College nurtures intellect and spirit, enlightens decision-making, inspires positive change, and improves the quality of life for people of all ages.
Browse
Browsing College of Liberal Arts and Human Sciences (CLAHS) by Department "Civil and Environmental Engineering"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Addressing the Contribution of Indirect Potable Reuse to Inland Freshwater SalinizationBhide, Shantanu V.; Grant, Stanley B.; Parker, Emily A.; Rippy, Megan A.; Godrej, Adil N.; Kaushal, Sujay S.; Prelewicz, Gregory; Saji, Niffy; Curtis, Shannon; Vikesland, Peter J.; Maile-Moskowitz, Ayella; Edwards, Marc A.; Lopez, Kathryn; Birkland, Thomas A.; Schenk, Todd (2021-02-02)Inland freshwater salinity is rising worldwide, a phenomenon called the freshwater salinization syndrome (FSS). We investigate a potential conflict between managing the FSS and indirect potable reuse, the practice of augmenting water supplies through the addition of reclaimed wastewater to surface waters and groundwaters. From time-series data collected over 25 years, we quantify the contributions of three salinity sources—a wastewater reclamation facility and two rapidly urbanizing watersheds—to the rising concentration of sodium (a major ion associated with the FSS) in a regionally important drinking water reservoir in the Mid-Atlantic United States. Sodium mass loading to the reservoir is primarily from watershed runoff during wet weather and reclaimed wastewater during dry weather. Across all timescales evaluated, sodium concentration in the reclaimed wastewater is higher than in outflow from the two watersheds. Sodium in reclaimed wastewater originates from chemicals added during wastewater treatment, industrial and commercial discharges, human excretion, and down-drain disposal of drinking water and sodium-rich household products. Thus, numerous opportunities exist to reduce the contribution of indirect potable reuse to sodium pollution at this site, and the FSS more generally. These efforts will require deliberative engagement with a diverse community of watershed stakeholders and careful consideration of the local political, social, and environmental context.
- Building Interdisciplinary Partnerships for Community-Engaged Environmental Health Research in Appalachian VirginiaSatterwhite, Emily M.; Bell, Shannon E.; Marr, Linsey C.; Thompson, Christopher K.; Prussin, Aaron J. II; Buttling, Lauren G.; Pan, Jin; Gohlke, Julia M. (MDPI, 2020-03-05)This article describes a collaboration among a group of university faculty, undergraduate students, local governments, local residents, and U.S. Army staff to address long-standing concerns about the environmental health effects of an Army ammunition plant. The authors describe community-responsive scientific pilot studies that examined potential environmental contamination and a related undergraduate research course that documented residents’ concerns, contextualized those concerns, and developed recommendations. We make a case for the value of resource-intensive university–community partnerships that promote the production of knowledge through collaborations across disciplinary paradigms (natural/physical sciences, social sciences, health sciences, and humanities) in response to questions raised by local residents. Our experience also suggests that enacting this type of research through a university class may help promote researchers’ adoption of “epistemological pluralism”, and thereby facilitate the movement of a study from being “multidisciplinary” to “transdisciplinary”.
- Environmental health disparities in the Central Appalachian region of the United StatesKrometis, Leigh-Anne H.; Gohlke, Julia M.; Kolivras, Korine N.; Satterwhite, Emily M.; Marmagas, Susan West; Marr, Linsey C. (De Gruyter, 2017-09-26)Health disparities that cannot be fully explained by socio-behavioral factors persist in the Central Appalachian region of the United States. A review of available studies of environmental impacts on Appalachian health and analysis of recent public data indicates that while disparities exist, most studies of local environmental quality focus on the preservation of nonhuman biodiversity rather than on effects on human health. The limited public health studies available focus primarily on the impacts of coal mining and do not measure personal exposure, constraining the ability to identify causal relationships between environmental conditions and public health. Future efforts must engage community members in examining all potential sources of environmental health disparities to identify effective potential interventions.