Virginia Tech Patents
Permanent URI for this community
Browse
Browsing Virginia Tech Patents by Department "Center for Power Electronics Systems"
Now showing 1 - 20 of 27
Results Per Page
Sort Options
- Anti-islanding detection for three-phase distributed generation(United States Patent and Trademark Office, 2017-04-25)Wobbling the operating frequency of a phase-locked loop (PLL), preferably by adding a periodic variation is feedback gain or delay in reference signal phase allows the avoidance of any non-detection zone that might occur due to exact synchronization of the phase locked loop operating frequency with a reference signal. If the change in PLL operating frequency is periodic, it can be made of adequate speed variation to accommodate and time requirement for islanding detection or the like when a reference signal being tracked by the PLL is lost. Such wobbling of the PLL operating frequency is preferably achieved by addition a periodic variable gain in a feedback loop and/or adding a periodically varying phase delay in a reference signal and/or PLL output.
- Avoiding internal switching loss in soft switching cascode structure device(United States Patent and Trademark Office, 2017-08-15)In a cascode switching device, avalanche breakdown of a control transistor and loss of soft switching or zero voltage switching in a high voltage normally-on depletion mode transistor having a negative switching threshold voltage and the corresponding losses are avoided by providing additional capacitance in parallel with a parallel connection of drain-source parasitic capacitance of the control transistor and gate-source parasitic capacitance of the high voltage, normally-on transistor to form a capacitive voltage divider with the drain-source parasitic capacitance of the high voltage, normally-on transistor such that the avalanche breakdown voltage of the control transistor cannot be reached. The increased capacitance also assures that the drain source parasitic capacitance of the high voltage, normally-on transistor is fully discharged before internal turn-on can occur.
- Energy storage for power factor correction in battery charger for electric-powered vehicles(United States Patent and Trademark Office, 2018-03-13)Switches of a switching circuit used to control operation of an electric motor such as in an electrically powered vehicle connect respective windings of the electric motor as a single phase inductor during battery charging. The inductor can then store inherent low frequency, second order ripple power and return that power to a load presented by a battery during battery charging to deliver substantially constant current. Storage of ripple power in the inductor allows the capacitance value, size, weight and cost of a filter capacitor of a power factor correction circuit providing input power to a battery charger to be reduced by an order of magnitude or more. Direction of current flow through the inductor is periodically reversed to avoid magnetizing the motor.
- External ramp autotuning for current mode control of switching converter(United States Patent and Trademark Office, 2017-06-13)Peak current, valley current or average current mode controlled power converters in either digital or analog implementations obtain a stabilized feedback loop and allow high system bandwidth design by use of an external ramp generator using a slope computation equation or design parameters based on fixing the quality factor of a double pole at one-half of the switching frequency at a desired value The slope of the external ramp waveform is tuned automatically with knowledge of the slope change in the waveform of inductor current of a power converter derived by differentiating a waveform in the current feedback loop. This autotuning of the external ramp generator provides immunity of quality factor change under variations of duty cycle, component values of topological change of the power converter.
- High frequency integrated point-of-load power converter with embedded inductor substrate(United States Patent and Trademark Office, 2017-02-07)A low profile power converter structure is provide wherein volume is reduced and power density is increased to approach 1 KW/in3 by at least one of forming an inductor as a body of magnetic material embedded in a substrate formed by a plurality of printed circuit board (PCB) lamina and forming inductor windings of PCB cladding and vias which may be of any desired number of turns and may include inversely coupled windings and which provide a lateral flux path, forming the body of magnetic material from high aspect ratio flakes of magnetic material which are aligned with the inductor magnetic field in an insulating organic binder and hot-pressed and providing a four-layer architecture comprising two layers of PCB lamina including the embedded body of magnetic material, a shield layer and an additional layer of PCB lamina, including cladding for supporting and connecting a switching circuit, a capacitor and the inductor.
- Hybrid interleaving structure with adaptive phase locked loop for variable frequency controlled switching converter(United States Patent and Trademark Office, 2018-07-03)In a multi-phase power converter using a phase-locked loop (PLL) arrangement for interleaving of pulse frequency modulated (PFM) pulses of the respective phases, improved transient response, improved stability of high bandwidth output voltage feedback loop, guaranteed stability of the PLL loop and avoidance of jittering and phase cancellation issues are achieved by anchoring the bandwidth at the frequency of peak phase margin. This methodology is applicable to multi-phase power conveners of any number of phases and any known or foreseeable topology for individual phases and is not only applicable to power converters operating under constant on-time control, but is extendable to ramp pulse modulation (RPM) control and hysteresis control. Interleaving of pulses from all phases is simplified through use of phase managers with a reduced number of PLLS using hybrid interleaving arrangements that do not exhibit jittering even when ripple is completely canceled.
- Iaverage current mode (ACM) control for switching power converters(United States Patent and Trademark Office, 2016-05-17)Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.
- Low profile coupled inductor substrate with transient speed improvement(United States Patent and Trademark Office, 2018-10-23)A low profile inductor structure suitable for use in a high power density power converter has one or more windings formed by vias through a thin, generally planar body of magnetic material forming the inductor core and conductive cladding on the body of magnetic material or material covering the magnetic material body. Variation of inductance with load current and other operational or environmental parameters is reduced to any desired degree by forming a slot that removes all or a portion of the magnetic material between the locations of the vias.
- Maximum power point tracking for solar panels(United States Patent and Trademark Office, 2017-06-20)Approximately one-half of the loss of delivered power from a solar panel having photovoltaic (PV) cells connected in series to form sub-panels due to shading is recovered at low hardware cost by connecting sub-panels in series and providing maximum power point tracking control in common for the series connected sub-panels such that the respective sub-panels produce equal voltages even in the presence of shading of a portion of one or more sub-panels. By doing so, the input voltage of respective power converters which control the voltage at which each sub-panel is operated can be placed close to the maximum power point of each sub-panel regardless of shading and maximum total power harvested even though the respective sub-panels are not operated at optimum voltages.
- Method and apparatus for current/power balancing(United States Patent and Trademark Office, 2017-02-28)Aspects of the disclosure provide a power circuit that includes a first switch circuit in parallel with a second switch circuit. The first switch circuit and the second switch circuit are coupled to a first driving node, a second driving node, a source node and a drain node via interconnections. The power circuit receives a control signal between the first driving node and the second driving node to control a current flowing from the drain node to the source node through the first switch circuit and the second switch circuit. In the power circuit, a first interconnection and a second interconnection of the interconnections are inductively coupled to balance the current flowing through the first switch circuit and the second switch circuit.
- Method and apparatus for current/power balancing(United States Patent and Trademark Office, 2018-03-20)Aspects of the disclosure provide a system having a power circuit. The power circuit includes a first switch circuit having at least a first transistor and a second switch circuit having at least a second transistor. Further, the power circuit includes first interconnections configured to couple the first switch circuit to driving nodes, a source node and a drain node of the power circuit, and second interconnection configured to couple the second switch circuit in parallel to the first switch circuit to the driving nodes, the source node and the drain node of the power circuit. A polarity of unbalance in the first interconnections and the second interconnections dominates a polarity of current unbalance in the first switch circuit and the second switch circuit.
- Method and apparatus for driving a power device(United States Patent and Trademark Office, 2016-12-27)Aspects of the disclosure provide a circuit for driving a power switch. The circuit includes a first circuit configured to provide a charging current to charge a control terminal of the power switch, a second circuit configured to provide a discharging current to discharge the control terminal of the power switch, and a control circuit configured to provide control signals to the first circuit and the second circuit to activate/deactivate the first circuit and the second circuit. At least one of the charging current and the discharging current ramps from a first level to a second level at a rate.
- Method and apparatus to improve power device reliability(United States Patent and Trademark Office, 2017-05-23)Aspects of the disclosure provide a power device that includes an upper power module and a lower power module. The upper power module and the lower power module are coupled in series between two supply voltages, and are respectively controlled by a first control signal and a second control signal. Interconnections of the power device are inductively coupled to prevent reliability issues, such as crosstalk, self turn on, self sustained oscillation, and the like.
- Method for reducing or eliminating conducted common mode noise in a transformer(United States Patent and Trademark Office, 2017-03-07)At least one shield member interposed between primary and secondary windings of a transformer and connected to the primary and/or secondary windings forms a distributed parasitic capacitance between the shield member and either the winding to which it is not connected or another shield member connected to that winding. Connections are made to the respective transformer windings such that the voltage distributions thus developed cause complementary common mode noise to be conducted in opposite directions in respective portions of the parasitic capacitance such that net common mode current can be made arbitrarily small without requiring that both sides of the distributed parasitic capacitance have complementary or equal voltage distributions. Such complementary common mode currents can be achieved by dividing opposing shield members or developing a voltage distribution in a single shield member in accordance with Faraday's Law.
- Multi-step simplified optimal trajectory control (SOTC) based on only Vo and I load(United States Patent and Trademark Office, 2018-09-11)A resonant power converter is disclosed with a driving circuit generating a switching signal connecting power to a resonant tank circuit, with a voltage monitoring circuit measuring a voltage output and a load current. A micro-controller is operable with a control circuit for multiple step sampling with the switching signal at a switching frequency to settle the resonant circuit determined from the voltage output and load current. A fast load transient response at a high frequency with the resonant circuit provides the multiple step sampling to ensure enough time for micro-controller to calculate. Optimal trajectory control facilitates a burst mode of high frequency with the resonant circuit using adaptive multiple step sampling for an on-time to extend the burst operation range. A soft start-up process uses the micro-controller processing in multiple stages.
- Optimal trajectory control for LLC resonant converter for LED PWM dimming(United States Patent and Trademark Office, 2016-03-01)Pulse width modulation is provided for controlling a resonant power converter, particularly for dimming of light emitting diode arrays without loss of efficiency. Dynamic oscillation due to the beginning of a pulse width modulated pulse burst is limited by shortening of the first and/or last pulse of a pulse bust such that the first pulse of a subsequent pulse burst close to or to connect with a full load steady-state voltage/current trajectory of the power converter. Pulse shortening made be made substantially exact to virtually eliminate dynamic oscillation but substantial reduction in dynamic oscillation is provided if inexact or even performed randomly.
- Optimal trajectory control for LLC resonant converter for soft start-up(United States Patent and Trademark Office, 2016-04-19)By setting switching instants of a switching circuit of a resonant power converter based on current in a resonant circuit reaching a current limit of a current limitation band, soft start-up of the power converter can be achieved to avoid or limit electrical stress with full control over a trade-off between time required to settle to a full load steady-state mode of operation and the amount of electrical stress permitted while soft start up switching frequency is automatically optimized.
- Parallel devices having balanced switching current and power(United States Patent and Trademark Office, 2018-10-30)A power circuit includes a power source for providing electrical power and two driving transistors being disposed in parallel and receiving electrical power from the power source. Each of the two driving transistors includes a gate terminal, a source connection, and a kelvin source connection. The power circuit also includes a control voltage source having a first terminal and a second terminal. The control voltage source provides a control signal to the two driving transistors for determining driving currents through the two driving transistors. The first terminal is connected to the gate terminals of the two driving transistors, and the second terminal is connected to the kelvin source connections of the two driving transistors. The kelvin source connections of the two driving transistors are inductively coupled.
- Power-cell switching-cycle capacitor voltage control for modular multi-level converters(United States Patent and Trademark Office, 2018-05-08)In a modular multi-level power converter, additional switching states are interleaved between main switching states that control output voltage or waveform. The additional switching states provide current from a DC-link to charge capacitors in respective modules or cells to an offset voltage from which the capacitor voltages are controlled toward a reference voltage during each switching cycle rather than being allowed to build up over a period of an output waveform of variable line frequency, possibly including zero frequency. Since the switching cycle is much shorter than the duration of a line frequency cycle and the capacitor voltages are balanced during each switching cycle, output voltage ripple can be limited as desired with a capacitor of much smaller value and size than would otherwise be required.
- Semiconductor module arrangement(United States Patent and Trademark Office, 2018-07-24)In a switching module structure that includes a low-impedance path to ground, such as a parasitic capacitance of an insulating substrate, a further insulating substrate presenting a parasitic capacitance placed in series with the low impedance current path and a connection of a conductive layer to input voltage rails using a single decoupling capacitor or, preferably, a midpoint of the voltage rails formed by a series connection of decoupling capacitors maintains a large portion of common mode (CM) currents which are due to high dV/dt slew rates of SiC and GaN transistors within the switching module.