Scholarly Works, Biomedical Sciences and Pathobiology
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Biomedical Sciences and Pathobiology by Department "Biomedical Engineering and Mechanics"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresisSalmanzadeh, Alireza; Kittur, Harsha; Sano, Michael B.; Roberts, Paul C.; Schmelz, Eva M.; Davalos, Rafael V. (American Institute of Physics, 2012-06-01)Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699973] Actual pdf downloaded from NCBI.
- Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporationHendricks-Wenger, Alissa; Aycock, Kenneth N.; Nagai-Singer, Margaret A.; Coutermarsh-Ott, Sheryl; Lorenzo, Melvin F.; Gannon, Jessica; Uh, Kyungjun; Farrell, Kayla; Beitel-White, Natalie; Brock, Rebecca M.; Simon, Alexander; Morrison, Holly A.; Tuohy, Joanne L.; Clark-Deener, Sherrie; Vlaisavljevich, Eli; Davalos, Rafael V.; Lee, Kiho; Allen, Irving C. (Nature Research, 2021-04-07)New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.
- High-Frequency Irreversible Electroporation for Treatment of Primary Liver Cancer: A Proof-of-Principle Study in Canine Hepatocellular CarcinomaPartridge, Brittanie R.; O'Brien, Timothy J.; Lorenzo, Melvin F.; Coutermarsh-Ott, Sheryl; Barry, Sabrina L.; Stadler, Krystina L.; Muro, Noelle; Meyerhoeffer, Mitchell; Allen, Irving C.; Davalos, Rafael V.; Dervisis, Nikolaos G. (2020-03)Purpose: To determine the safety and feasibility of percutaneous high-frequency irreversible electroporation (HFIRE) for primary liver cancer and evaluate the HFIRE-induced local immune response. Materials and Methods: HFIRE therapy was delivered percutaneously in 3 canine patients with resectable hepatocellular carcinoma (HCC) in the absence of intraoperative paralytic agents or cardiac synchronization. Pre- and post-HFIRE biopsy samples were processed with histopathology and immunohistochemistry for CD3, CD4, CD8, and CD79a. Blood was collected on days 0, 2, and 4 for complete blood count and chemistry. Numeric models were developed to determine the treatment-specific lethal thresholds for malignant canine liver tissue and healthy porcine liver tissue. Results: HFIRE resulted in predictable ablation volumes as assessed by posttreatment CT. No detectable cardiac interference and minimal muscle contraction occurred during HFIRE. No clinically significant adverse events occurred secondary to HFIRE. Microscopically, a well-defined ablation zone surrounded by a reactive zone was evident in the majority of samples. This zone was composed primarily of maturing collagen interspersed with CD3(+)/CD4(-)/CD8(-) lymphocytes in a proinflammatory microenvironment. The average ablation volumes for the canine HCC patients and the healthy porcine tissue were 3.89 cm(3) +/- 0.74 and 1.56 cm(3) +/- 0.16, respectively (P = .03), and the respective average lethal thresholds were 710 V/cm +/- 28.2 and 957 V/cm +/- 24.4 V/cm (P = .0004). Conclusions: HFIRE can safely and effectively be delivered percutaneously, results in a predictable ablation volume, and is associated with lymphocytic tumor infiltration. This is the first step toward the use of HFIRE for treatment of unresectable liver tumors.
- High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunityRingel-Scaia, Veronica M.; Beitel-White, Natalie; Lorenzo, Melvin F.; Brock, Rebecca M.; Huie, Kathleen E.; Coutermarsh-Ott, Sheryl; Eden, Kristin; McDaniel, Dylan K.; Verbridge, Scott S.; Rossmeisl, John H. Jr.; Oestreich, Kenneth J.; Davalos, Rafael V.; Allen, Irving C. (2019-06)Background: Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. Methods: Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. Findings: H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. Interpretation: Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity. (C) 2019 The Authors. Published by Elsevier B.V.
- Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cellsSalmanzadeh, Alireza; Sano, Michael B.; Gallo-Villanueva, R. C.; Roberts, Paul C.; Schmelz, Eva M.; Davalos, Rafael V. (American Institute of Physics, 2013-01-01)In this study, the electrical properties of four different stages of mouse ovarian surface epithelial (MOSE) cells were investigated using contactless dielectrophoresis (cDEP). This study expands the work from our previous report describing for the first time the crossover frequency and cell specific membrane capacitance of different stages of cancer cells that are derived from the same cell line. The specific membrane capacitance increased as the stage of malignancy advanced from 15.39 +/- 1.54 mF m(-2) for a non-malignant benign stage to 26.42 +/- 1.22 mF m(-2) for the most aggressive stage. These differences could be the result of morphological variations due to changes in the cytoskeleton structure, specifically the decrease of the level of actin filaments in the cytoskeleton structure of the transformed MOSE cells. Studying the electrical properties of MOSE cells provides important information as a first step to develop cancer-treatment techniques which could partially reverse the cytoskeleton disorganization of malignant cells to a morphology more similar to that of benign cells. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4788921] Actual pdf downloaded from NCBI.
- Patient Derived Xenografts Expand Human Primary Pancreatic Tumor Tissue Availability for ex vivo Irreversible Electroporation TestingBrock, Rebecca M.; Beitel-White, Natalie; Coutermarsh-Ott, Sheryl; Grider, Douglas J.; Lorenzo, Melvin F.; Ringel-Scaia, Veronica M.; Manuchehrabadi, Navid; Martin, Robert C. G.; Davalos, Rafael V.; Allen, Irving C. (2020-05-22)New methods of tumor ablation have shown exciting efficacy in pre-clinical models but often demonstrate limited success in the clinic. Due to a lack of quality or quantity in primary malignant tissue specimens, therapeutic development and optimization studies are typically conducted on healthy tissue or cell-line derived rodent tumors that don't allow for high resolution modeling of mechanical, chemical, and biological properties. These surrogates do not accurately recapitulate many critical components of the tumor microenvironment that can impact in situ treatment success. Here, we propose utilizing patient-derived xenograft (PDX) models to propagate clinically relevant tumor specimens for the optimization and development of novel tumor ablation modalities. Specimens from three individual pancreatic ductal adenocarcinoma (PDAC) patients were utilized to generate PDX models. This process generated 15-18 tumors that were allowed to expand to 1.5 cm in diameter over the course of 50-70 days. The PDX tumors were morphologically and pathologically identical to primary tumor tissue. Likewise, the PDX tumors were also found to be physiologically superior to other in vitro and ex vivo models based on immortalized cell lines. We utilized the PDX tumors to refine and optimize irreversible electroporation (IRE) treatment parameters. IRE, a novel, non-thermal tumor ablation modality, is being evaluated in a diverse range of cancer clinical trials including pancreatic cancer. The PDX tumors were compared against either Pan02 mouse derived tumors or resected tissue from human PDAC patients. The PDX tumors demonstrated similar changes in electrical conductivity and Joule heating following IRE treatment. Computational modeling revealed a high similarity in the predicted ablation size of the PDX tumors that closely correlate with the data generated with the primary human pancreatic tumor tissue. Gene expression analysis revealed that IRE treatment resulted in an increase in biological pathway signaling associated with interferon gamma signaling, necrosis and mitochondria dysfunction, suggesting potential co-therapy targets. Together, these findings highlight the utility of the PDX system in tumor ablation modeling for IRE and increasing clinical application efficacy. It is also feasible that the use of PDX models will significantly benefit other ablation modality testing beyond IRE.
- Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation StrategiesBrock, Rebecca M.; Beitel-White, Natalie; Davalos, Rafael V.; Allen, Irving C. (2020-07-28)New therapeutic strategies and paradigms are direly needed for the treatment of cancer. While the surgical removal of tumors is favored in most cancer treatment plans, resection options are often limited based on tumor localization. Over the last two decades, multiple tumor ablation strategies have emerged as promising stand-alone or combination therapeutic options for patients. These strategies are often employed to treat tumors in areas where surgical resection is not possible or where chemotherapeutics have proven ineffective. The type of cell death induced by the ablation modality is a critical aspect of therapeutic success that can impact the efficacy of the treatment and systemic anti-tumor immune system responses. Electroporation-based ablation technologies include electrochemotherapy, irreversible electroporation, and other modalities that rely on pulsed electric fields to create pores in cell membranes. These pores can either be reversible or irreversible depending on the electric field parameters and can induce cell death either alone or in combination with a therapeutic agent. However, there have been many controversial findings among these technologies as to the cell death type initiated, from apoptosis to pyroptosis. As cell death mechanisms can impact treatment side effects and efficacy, we review the main types of cell death induced by electroporation-based treatments and summarize the impact of these mechanisms on treatment response. We also discuss potential reasons behind the variability of findings such as the similarities between cell death pathways, differences between cell-types, and the variation in electric field strength across the treatment area.