Scholarly Works, Biomedical Sciences and Pathobiology

Permanent URI for this collection

Research articles, presentations, and other scholarship

Browse

Recent Submissions

Now showing 1 - 20 of 585
  • Atazanavir Resensitizes Candida auris to Azoles
    Elgammal, Yehia; Salama, Ehab A.; Seleem, Mohamed N. (American Society for Microbiology, 2023-05-17)
    Candida auris represents an urgent health threat. Here, we identified atazanavir as a potent drug capable of resensitizing C. auris clinical isolates to the activity of azole antifungals. Atazanavir was able to significantly inhibit the efflux pumps, glucose transport, and ATP synthesis of all tested isolates of C. auris. In addition, the combination of itraconazole with atazanavir-ritonavir significantly reduced the burden of azole-resistant C. auris in murine kidneys by 1.3 log10 (95%), compared to itraconazole alone.
  • Colonization efficiency of multidrug-resistant Neisseria gonorrhoeae in a female mouse model
    Kikiowo, Babatomiwa; Bandara, Aloka B.; Abutaleb, Nader S.; Seleem, Mohamed N. (Oxford University Press, 2023-10-18)
    The rapid occurrence of gonococcal resistance to all classes of antibiotics could lead to untreatable gonorrhea. Thus, development of novel anti-Neisseria gonorrhoeae drugs is urgently needed. Neisseria gonorrhoeae FA1090 is the most used in gonococcal infection mouse models because of its natural resistance to streptomycin. Streptomycin inhibits the urogenital commensal flora that permits gonococcal colonization. However, this strain is drug-susceptible and cannot be used to investigate the efficacy of novel agents against multidrug-resistant N. gonorrhoeae. Hence, to test the in vivo efficacy of new therapeutics against N. gonorrhoeae resistant to the frontline antibiotics, azithromycin, or ceftriaxone, we constructed streptomycin-resistant mutants of N. gonorrhoeae CDC-181 (azithromycin-resistant) and WHO-X (ceftriaxone-resistant). We identified the inoculum size needed to successfully colonize mice. Both mutants, CDC-181-rpsLA128G and WHO-X-rpsLA128G, colonized the genital tract of mice for 14 days with 100% colonization observed for at least 7 days. CDC-181-rpsLA128G demonstrated better colonization of the murine genital tract compared to WHO-X-rpsLA128G. Lower inoculum of WHO-X-rpsLA128G (105 and 106 CFU) colonized mice better than higher inoculum. Overall, our results indicate that CDC-181-rpsLA128G and WHO-X-rpsLA128G can colonize the lower genital tract of mice and are suitable to be used in mouse models to investigate the efficacy of antigonococcal agents.
  • Lopinavir and ritonavir act synergistically with azoles against Candida auris in vitro and in a mouse model of disseminated candidiasis
    Salama, Ehab A.; Eldesouky, Hassan E.; Elgammal, Yehia; Abutaleb, Nader S.; Seleem, Mohamed N. (Elsevier, 2023-09)
    Introduction and Objectives: The emergence of Candida auris has created a global health challenge. Azole antifungals are the most affected antifungal class because of the extraordinary capability of C. auris to develop resistance against these drugs. Here, we used a combinatorial therapeutic approach to sensitize C. auris to azole antifungals. Methods and Results: We have demonstrated the capability of the HIV protease inhibitors lopinavir and ritonavir, at clinically relevant concentrations, to be used with azole antifungals to treat C. auris infections both in vitro and in vivo. Both lopinavir and ritonavir exhibited potent synergistic interactions with the azole antifungals, particularly with itraconazole against 24/24 (100%) and 31/34 (91%) of tested C. auris isolates, respectively. Furthermore, ritonavir significantly interfered with the fungal efflux pump, resulting in a significant increase in Nile red fluorescence by 44%. In a mouse model of C. auris systemic infection, ritonavir boosted the activity of lopinavir to work synergistically with fluconazole and itraconazole and significantly reduced the kidney fungal burden by a 1.2 log (∼94%) and 1.6 log (∼97%) CFU, respectively. Conclusion: Our results urge further comprehensive assessment of azoles and HIV protease inhibitors as a novel drug regimen for the treatment of serious invasive C. auris infections.
  • Probiotics: insights and new opportunities for Clostridioides difficile intervention
    Pal, Rusha; Athamneh, Ahmad I. M.; Deshpande, Riddhi; Ramirez, Jose A. R.; Adu, Kayode T.; Muthuirulan, Pushpanathan; Pawar, Shrikant; Biazzo, Manuele; Apidianakis, Yiorgos; Sundekilde, Ulrik Kraemer; de la Fuente-Nunez, Cesar; Martens, Mark G.; Tegos, George P.; Seleem, Mohamed N. (Taylor & Francis, 2022-05-15)
    Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.
  • Efferocytosis is restricted by axon guidance molecule EphA4 via ERK/Stat6/MERTK signaling following brain injury
    Soliman, Eman; Leonard, John; Basso, Erwin K. G.; Gershenson, Ilana; Ju, Jing; Mills, Jatia; de Jager, Caroline; Kaloss, Alexandra M.; Elhassanny, Mohamed; Pereira, Daniela; Chen, Michael; Wang, Xia; Theus, Michelle H. (2023-11-09)
    Background Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. Methods We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. Results Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. Conclusions Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.
  • Remdesivir increases mtDNA copy number causing mild alterations to oxidative phosphorylation
    DeFoor, Nicole; Paul, Swagatika; Li, Shuang; Basso, Erwin K. Gudenschwager; Stevenson, Valentina; Browning, Jack L.; Prater, Anna K.; Brindley, Samantha; Tao, Ge; Pickrell, Alicia M. (Springer, 2023-12-01)
    SARS-CoV-2 causes the severe respiratory disease COVID-19. Remdesivir (RDV) was the first fast-tracked FDA approved treatment drug for COVID-19. RDV acts as an antiviral ribonucleoside (adenosine) analogue that becomes active once it accumulates intracellularly. It then diffuses into the host cell and terminates viral RNA transcription. Previous studies have shown that certain nucleoside analogues unintentionally inhibit mitochondrial RNA or DNA polymerases or cause mutational changes to mitochondrial DNA (mtDNA). These past findings on the mitochondrial toxicity of ribonucleoside analogues motivated us to investigate what effects RDV may have on mitochondrial function. Using in vitro and in vivo rodent models treated with RDV, we observed increases in mtDNA copy number in Mv1Lu cells (35.26% increase ± 11.33%) and liver (100.27% increase ± 32.73%) upon treatment. However, these increases only resulted in mild changes to mitochondrial function. Surprisingly, skeletal muscle and heart were extremely resistant to RDV treatment, tissues that have preferentially been affected by other nucleoside analogues. Although our data suggest that RDV does not greatly impact mitochondrial function, these data are insightful for the treatment of RDV for individuals with mitochondrial disease.
  • Ablative and Immunostimulatory Effects of Histotripsy Ablation in a Murine Osteosarcoma Model
    Hay, Alayna N.; Imran, Khan Mohammad; Hendricks-Wenger, Alissa; Gannon, Jessica M.; Sereno, Jacqueline; Simon, Alex; Lopez, Victor A.; Coutermarsh-Ott, Sheryl; Vlaisavljevich, Eli; Allen, Irving C.; Tuohy, Joanne L. (MDPI, 2023-10-09)
    Background: Osteosarcoma (OS) is the most frequently occurring malignant bone tumor in humans, primarily affecting children and adolescents. Significant advancements in treatment options for OS have not occurred in the last several decades, and the prognosis remains grim with only a 70% rate of 5-year survival. The objective of this study was to investigate the focused ultrasound technique of histotripsy as a novel, noninvasive treatment option for OS. Methods: We utilized a heterotopic OS murine model to establish the feasibility of ablating OS tumors with histotripsy in a preclinical setting. We investigated the local immune response within the tumor microenvironment (TME) via immune cell phenotyping and gene expression analysis. Findings: We established the feasibility of ablating heterotopic OS tumors with ablation characterized microscopically by loss of cellular architecture in targeted regions of tumors. We observed greater populations of macrophages and dendritic cells within treated tumors and the upregulation of immune activating genes 72 h after histotripsy ablation. Interpretation: This study was the first to investigate histotripsy ablation for OS in a preclinical murine model, with results suggesting local immunomodulation within the TME. Our results support the continued investigation of histotripsy as a novel noninvasive treatment option for OS patients to improve clinical outcomes and patient prognosis.
  • Development of Chimeric Hepatitis B (HBV) – Norovirus (NoV) P particle as candidate vaccine against Hepatitis B and norovirus infection
    Giri-Rachman, Ernawati Arifin; Irasonia Tan, Marselina; Ramesh, Ashwin; Fajar, Putri Ayu; Nurul Ilmi, Annisa; Retnoningrum, Debbie Sofie; Hertadi, Rukman; Irawan, Apriliani; Wojciechowska, Gladys Emmanuella Putri; Yuan, Lijuan (Elsevier, 2023-08-01)
    Introduction: Hepatitis B remains a global problem with no effective treatment. Here, a mucosal vaccine candidate was developed with HBsAg and HBcAg, to provide both prophylactic and therapeutic protection against hepatitis B. The antigens were presented using the P particle of human norovirus (HuNov). As a result, the chimeric HBV – HuNoV P particle can act as a dual vaccine for hepatitis B and HuNoV. Methods: The vaccine candidate was expressed and purified from Escherichia coli BL21 (DE3) cells. HBV-HuNoV chimeric P particles were successfully expressed and isolated, with sizes of approximately 25.64 nm. Then, the HBV-HuNoV chimeric P particles were evaluated for safety and immunogenicity in mice and gnotobiotic (Gn) pigs. After three doses (5 µg/dose in mice and 200 µg/dose in Gn pigs) of intranasal immunization, humoral and cellular immune responses, as well as toxicity, were evaluated. Results: The vaccine candidate induced strong HBV-HuNoV specific IFN-γ producing T-cell responses in the ileum, spleen, and blood of Gn pigs. Serum IgG and IgA antibodies against HBV-HuNoV chimeric P particles also increased significantly in Gn pigs. Increased HBsAg- and HuNoV-specific serum IgG responses were observed in mice and Gn pigs, although not statistically significant. The vaccine candidate did not show any toxicity in mice. Conclusions: In summary, the chimeric HBV-HuNoV P particle vaccine given intranasally was safe and induced strong cellular and humoral immune responses in Gn pig. Modifications to the vaccine structure and dosage need to be evaluated in future studies to further enhance immunogenicity and induce more balanced humoral and cellular responses.
  • Sialokinin in mosquito saliva shifts human immune responses towards intracellular pathogens
    Spencer Clinton, Jennifer L.; Vogt, Megan B.; Kneubehl, Alexander R.; Hibl, Brianne M.; Paust, Silke; Rico-Hesse, Rebecca (Public Library of Science, 2023-02)
    Mosquito saliva is a mix of numerous proteins that are injected into the skin while the mosquito searches for a blood meal. While mosquito saliva is known to be immunogenic, the salivary components driving these immune responses, as well as the types of immune responses that occur, are not well characterized. We investigated the effects of one potential immunomodulatory mosquito saliva protein, sialokinin, on the human immune response. We used flow cytometry to compare human immune cell populations between humanized mice bitten by sialokinin knockout mosquitoes or injected with sialokinin, and compared them to those bitten by wild-type mosquitoes, unbitten, or saline-injected control mice. Humanized mice received 4 mosquito bites or a single injection, were euthanized after 7 days, and skin, spleen, bone marrow, and blood were harvested for immune cell profiling. Our results show that bites from sialokinin knockout mosquitoes induced monocyte and macrophage populations in the skin, blood, bone marrow, and spleens, and primarily affected CD11c- cell populations. Other increased immune cells included plasmacytoid dendritic cells in the blood, natural killer cells in the skin and blood, and CD4+ T cells in all samples analyzed. Conversely, we observed that mice bitten with sialokinin knockout mosquitoes had decreased NKT cell populations in the skin, and fewer B cells in the blood, spleen, and bone marrow. Taken together, we demonstrated that sialokinin knockout saliva induces elements of a T(H)1 cellular immune response, suggesting that the sialokinin peptide is inducing a T(H)2 cellular immune response during wild-type mosquito biting. These findings are an important step towards understanding how mosquito saliva modulates the human immune system and which components of saliva may be critical for arboviral infection. By identifying immunomodulatory salivary proteins, such as sialokinin, we can develop vaccines against mosquito saliva components and direct efforts towards blocking arboviral infections. Author summaryNumerous studies have shown the effects of mosquito saliva proteins on the immune system of animals and humans with disease caused by mosquito-borne pathogens. We have previously described some of these effects in humanized mice (which contain specific human immune system cells and develop arboviral diseases similar to humans) infected by mosquito bite with dengue and chikungunya viruses. In this study, we show that humanized mice have altered cellular immune responses after they are bitten by uninfected mosquitoes lacking the sialokinin salivary protein. Our results suggest that sialokinin alone shifts mammalian immunity towards a T(H)2 response, away from the anti-viral, cell-mediated, and humoral responses that would protect against viruses included in the saliva. This is the first study of its kind, and it highlights how the effects of specific saliva components can be evaluated for human therapeutic intervention.
  • Genomic and phenotypic analyses suggest moderate fitness differences among Zika virus lineages
    Oliveira, Glenn; Vogels, Chantal B. F.; Zolfaghari, Ashley; Saraf, Sharada; Klitting, Raphaelle; Weger-Lucarelli, James; Leon, Karla P.; Ontiveros, Carlos O.; Agarwal, Rimjhim; Tsetsarkin, Konstantin A.; Harris, Eva; Ebel, Gregory D.; Wohl, Shirlee; Grubaugh, Nathan D.; Andersen, Kristian G. (Public Library of Science, 2023-02)
    Zika virus was introduced to the Western Hemisphere, spread rapidly, and led to the 2015-2016 Zika epidemic and a rise in congenital microcephaly. It remains unclear whether Zika virus evolved to become more transmissible directly before or during the epidemic. To investigate whether Zika evolved to become more transmissible, we engineered a library of recombinant viruses that represent twelve major Zika virus lineages that circulated throughout the Americas. We measured the replicative fitness of each of these lineages by infecting live mosquitoes and human cells that are relevant for disease or transmission. We found that two of the lineages, one that dominated Central America and another that existed mostly in the Caribbean, appear to replicate more efficiently in human cells. While the fitness changes do not appear to have significant effects on the 2015-2016 Zika epidemic, our analysis suggests Zika virus evolved at least twice during this outbreak. Monitoring the phenotypic evolution during the course of an outbreak can help control spread and mitigate disease. We believe this framework can be applied to study phenotypic evolution during future epidemics caused by emerging RNA viruses. RNA viruses have short generation times and high mutation rates, allowing them to undergo rapid molecular evolution during epidemics. However, the extent of RNA virus phenotypic evolution within epidemics and the resulting effects on fitness and virulence remain mostly unknown. Here, we screened the 2015-2016 Zika epidemic in the Americas for lineage-specific fitness differences. We engineered a library of recombinant viruses representing twelve major Zika virus lineages and used them to measure replicative fitness within disease-relevant human primary cells and live mosquitoes. We found that two of these lineages conferred significant in vitro replicative fitness changes among human primary cells, but we did not find fitness changes in Aedes aegypti mosquitoes. Additionally, we found evidence for elevated levels of positive selection among five amino acid sites that define major Zika virus lineages. While our work suggests that Zika virus may have acquired several phenotypic changes during a short time scale, these changes were relatively moderate and do not appear to have enhanced transmission during the epidemic.
  • Campylobacter in aquatic and terrestrial mammals is driven by life traits: A systematic review and meta-analysis
    Brooks, Michael R.; Medley, Sarah; Ponder, Monica A.; Alexander, Kathleen A. (Frontiers, 2023-02)
    Introduction: Campylobacter spp. infections are responsible for significant diarrheal disease burden across the globe, with prevalence thought to be increasing. Although wild avian species have been studied as reservoirs of Campylobacter spp., our understanding of the role of wild mammalian species in disease transmission and persistence is limited. Host factors influencing infection dynamics in wild mammals have been neglected, particularly life traits, and the role of these factors in zoonotic spillover risk is largely unknown. Methods: Here, we conducted a systematic literature review, identifying mammalian species that had been tested for Campylobacter spp. infections (molecular and culture based). We used logistic regression to evaluate the relationship between the detection of Campylobacter spp. in feces and host life traits (urban association, trophic level, and sociality). Results: Our analysis suggest that C. jejuni transmission is associated with urban living and trophic level. The probability of carriage was highest in urban-associated species (p = 0.02793) and the most informative model included trophic level. In contrast, C. coli carriage appears to be strongly influenced by sociality (p = 0.0113) with trophic level still being important. Detection of Campylobacter organisms at the genus level, however, was only associated with trophic level (p = 0.0156), highlighting the importance of this trait in exposure dynamics across host and Campylobacter pathogen systems. Discussion: While many challenges remain in the detection and characterization of Camploybacter spp., these results suggest that host life traits may have important influence on pathogen exposure and transmission dynamics, providing a useful starting point for more directed surveillance approaches.
  • Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness
    Marano, Jeffrey M.; Weger-Lucarelli, James (Frontiers, 2023-03)
    Introduction: Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods: We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naive patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion: Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
  • Nlrp12 deficiency alters gut microbiota and ameliorates Fas(lpr)-mediated systemic autoimmunity in male mice
    Abdelhamid, Leila; Mao, Jiangdi; Cabana-Puig, Xavier; Zhu, Jing; Swartwout, Brianna K.; Edwards, Michael R.; Testerman, James C.; Michaelis, Jacquelyn S.; Allen, Irving Coy; Ahmed, S. Ansar; Luo, Xin M. (Frontiers, 2023-03)
    NLRP12 has dual roles in shaping inflammation. We hypothesized that NLRP12 would modulate myeloid cells and T cell function to control systemic autoimmunity. Contrary to our hypothesis, the deficiency of Nlrp12 in autoimmune-prone B6.Fas(lpr/lpr) mice ameliorated autoimmunity in males but not females. Nlrp12 deficiency dampened B cell terminal differentiation, germinal center reaction, and survival of autoreactive B cells leading to decreased production of autoantibodies and reduced renal deposition of IgG and complement C3. In parallel, Nlrp12 deficiency reduced the expansion of potentially pathogenic T cells, including double-negative T cells and T follicular helper cells. Furthermore, reduced pro-inflammatory innate immunity was observed, where the gene deletion decreased in-vivo expansion of splenic macrophages and mitigated ex-vivo responses of bone marrow-derived macrophages and dendritic cells to LPS stimulation. Interestingly, Nlrp12 deficiency altered the diversity and composition of fecal microbiota in both male and female B6/lpr mice. Notably, however, Nlrp12 deficiency significantly modulated small intestinal microbiota only in male mice, suggesting that the sex differences in disease phenotype might be gut microbiota-dependent. Together, these results suggest a potential pathogenic role of NLRP12 in promoting systemic autoimmunity in males. Future studies will investigate sex-based mechanisms through which NLRP12 differentially modulates autoimmune outcomes.
  • Fetal Loss in Pregnant Rabbits Infected with Genotype 3 Hepatitis E Virus Is Associated with Altered Inflammatory Responses, Enhanced Virus Replication, and Extrahepatic Virus Dissemination with Positive Correlations with Increased Estradiol Level
    Mahsoub, Hassan M. M.; Heffron, C. Lynn; Hassebroek, Anna M. M.; Sooryanarain, Harini; Wang, Bo; LeRoith, Tanya; Rodriguez, Guillermo Raimundi; Tian, Debin; Meng, Xiang-Jin (American Society for Microbiology, 2023-03)
    HEV causes adverse pregnancy outcomes, with a mortality rate of >30% in pregnant women, but the underlying mechanisms are poorly understood. In this study, we utilized HEV-3ra and its cognate host (pregnant rabbit) to delineate the potential underlying mechanisms of pregnancy-associated adverse outcomes during HEV infection. Hepatitis E virus (HEV) causes adverse clinical outcomes in pregnant women, but the underlying mechanisms remain poorly understood. To delineate the mechanisms of pregnancy-associated adverse effects during HEV infection, we utilized a genotype 3 HEV from rabbit (HEV-3ra) and its cognate host (rabbits) to systematically investigate the clinical consequences, viral replication dynamics, and host immune and hormonal responses of HEV infection during pregnancy. We found a significant fetal loss of 23% in HEV-infected pregnant rabbits, indicating an early-stage miscarriage. HEV infection in pregnant rabbits was characterized by higher viral loads in feces, intestinal contents, liver, and spleen tissues, as well as a longer and earlier onset of viremia than in infected nonpregnant rabbits. HEV infection altered the pattern of cytokine gene expressions in the liver of pregnant rabbits and caused a transient increase of serum interferon gamma (IFN-gamma) shortly after a notable increase in viral replication, which may contribute to early fetal loss. Histological lesions in the spleen were more pronounced in infected pregnant rabbits, although moderate liver lesions were seen in both infected pregnant and nonpregnant rabbits. Total bilirubin was elevated in infected pregnant rabbits. The serum levels of estradiol (E2) in HEV-infected pregnant rabbits were significantly higher than those in mock-infected pregnant rabbits at 14 days postinoculation (dpi) and correlated positively with higher viral loads in feces, liver, and spleen tissues at 28 dpi, suggesting that it may play a role in extrahepatic virus dissemination. The results have important implications for understanding the severe diseases associated with HEV infection during pregnancy.IMPORTANCE HEV causes adverse pregnancy outcomes, with a mortality rate of >30% in pregnant women, but the underlying mechanisms are poorly understood. In this study, we utilized HEV-3ra and its cognate host (pregnant rabbit) to delineate the potential underlying mechanisms of pregnancy-associated adverse outcomes during HEV infection. We found that infected pregnant rabbits had a fetal loss of 23%, which coincided with enhanced viral replication and an elevated systemic IFN-gamma response, followed by longer viremia duration and extrahepatic viral dissemination. Estradiol levels were increased in infected pregnant rabbits and correlated positively with higher fecal viral shedding and higher viral loads in liver and spleen tissues. Infected pregnant rabbits had more pronounced splenic lesions, higher serum total bilirubin, and an altered cytokine gene expression profile in the liver. The results will contribute to our understanding of the mechanisms of HEV-associated adverse pregnancy outcomes.
  • Human Rotavirus Replicates in Salivary Glands and Primes Immune Responses in Facial and Intestinal Lymphoid Tissues of Gnotobiotic Pigs
    Nyblade, Charlotte; Zhou, Peng; Frazier, Maggie; Frazier, Annie; Hensley, Casey; Fantasia-Davis, Ariana; Shahrudin, Shabihah; Hoffer, Miranda; Agbemabiese, Chantal Ama; LaRue, Lauren; Barro, Mario; Patton, John T.; Parreño, Viviana; Yuan, Lijuan (MDPI, 2023-08-31)
    Human rotavirus (HRV) is a leading cause of viral gastroenteritis in children across the globe. The virus has long been established as a pathogen of the gastrointestinal tract, targeting small intestine epithelial cells and leading to diarrhea, nausea, and vomiting. Recently, this classical infection pathway was challenged by the findings that murine strains of rotavirus can infect the salivary glands of pups and dams and transmit via saliva from pups to dams during suckling. Here, we aimed to determine if HRV was also capable of infecting salivary glands and spreading in saliva using a gnotobiotic (Gn) pig model of HRV infection and disease. Gn pigs were orally inoculated with various strains of HRV, and virus shedding was monitored for several days post-inoculation. HRV was shed nasally and in feces in all inoculated pigs. Infectious HRV was detected in the saliva of four piglets. Structural and non-structural HRV proteins, as well as the HRV genome, were detected in the intestinal and facial tissues of inoculated pigs. The pigs developed high IgM antibody responses in serum and small intestinal contents at 10 days post-inoculation. Additionally, inoculated pigs had HRV-specific IgM antibody-secreting cells present in the ileum, tonsils, and facial lymphoid tissues. Taken together, these findings indicate that HRV can replicate in salivary tissues and prime immune responses in both intestinal and facial lymphoid tissues of Gn pigs.
  • Clinical and Molecular Epidemiology of Hemorrhagic Fever with Renal Syndrome Caused by Orthohantaviruses in Xiangyun County, Dali Prefecture, Yunnan Province, China
    Huang, Hao; Fu, Meng; Han, Peiyu; Yin, Hongmin; Yang, Zi; Kong, Yichen; Wang, Bo; Yang, Xinglou; Ren, Tilian; Zhang, Yunzhi (MDPI, 2023-09-12)
    Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease transmitted by several rodent species. We obtained clinical data of HFRS patients from the medical records of the People’s Hospital of Xiangyun County in Dali Prefecture from July 2019 to August 2021. We collected epidemiological data of HFRS patients through interviews and investigated host animals using the night clip or night cage method. We systematically performed epidemiological analyses of patients and host animals. The differences in the presence of rodent activity at home (χ2 = 8.75, p = 0.031 < 0.05), of rodent-proof equipment in the food (χ2 = 9.19, p = 0.025 < 0.05), and of rodents or rodent excrement in the workplace (χ2 = 10.35, p = 0.014 < 0.05) were statistically different in the four clinical types, including mild, medium, severe, and critical HFRS-associated diseases. Furthermore, we conducted molecular detection of orthohantavirus in host animals. The total orthohantavirus infection rate of rodents was 2.72% (9/331); the specific infection rate of specific animal species was 6.10% (5/82) for the Apodemus chevrieri, 100% (1/1) for the Rattus nitidus, 3.77% (2/53) for the Rattus norvegicus, and 12.50% (1/8) for the Crocidura dracula. In this study, a total of 21 strains of orthohantavirus were detected in patients and rodents. The 12 orthohantavirus strains from patients showed a closer relationship with Seoul orthohantavirus (SEOOV) L0199, DLR2, and GZRn60 strains; the six orthohantavirus strains from Rattus norvegicus and Apodemus chevrieri were closely related to SEOOV GZRn60 strain. One strain (XYRn163) from Rattus norvegicus and one strain (XYR.nitidus97) from Rattus nitidus were closely related to SEOOV DLR2 strain; the orthohantavirus strain from Crocidura dracula was closely related to the Luxi orthohantavirus (LUXV) LX309 strain. In conclusion, patients with HFRS in Xuangyun County of Dali Prefecture are predominantly affected by SEOOV, with multiple genotypes of orthohantavirus in host animals, and, most importantly, these orthohantavirus strains constantly demonstrated zoonotic risk in humans.
  • Pioneer colonizers: Bacteria that alter the chicken intestinal morphology and development of the microbiota
    Lee, Margie D.; Pedroso, Adriana A.; Lumpkins, Brett; Cho, Youngjae; Maurer, John J. (Frontiers, 2023-03)
    Microbes commonly administered to chickens facilitate development of a beneficial microbiome that improves gut function, feed conversion and reduces pathogen colonization. Competitive exclusion products, derived from the cecal contents of hens and shown to reduce Salmonella colonization in chicks, possess important pioneer-colonizing bacteria needed for proper intestinal development and animal growth. We hypothesized that inoculation of these pioneer-colonizing bacteria to day of hatch chicks would enhance the development of their intestinal anatomy and microbiome. A competitive exclusion product was administered to broiler chickens, in their drinking water, at day of hatch, and its impact on intestinal morphometrics, intestinal microbiome, and production parameters, was assessed relative to a control, no treatment group. 16S rRNA gene, terminal restriction fragment length polymorphism (T-RFLP) was used to assess ileal community composition. The competitive exclusion product, administered on day of hatch, increased villus height, villus height/width ratio and goblet cell production similar to 1.25-fold and expression of enterocyte sugar transporters 1.25 to 1.5-fold in chickens at 3 days of age, compared to the control group. As a next step, chicks were inoculated with a defined formulation, containing Bacteroidia and Clostridia representing pioneercolonizing bacteria of the two major bacterial phyla present in the competitive exclusion product. The defined formulation, containing both groups of bacteria, were shown, dependent on age, to improve villus height (jejunum: 1.14 to 1.46fold; ileum: 1.17-fold), goblet cell numbers (ileum 1.32 to 2.51-fold), and feed efficiency (1.18-fold, day 1) while decreasing Lactobacillus ileal abundance by onethird to half in birds at 16 and 42 days of age, respectively; compared to the phosphate buffered saline treatment group. Therefore, specific probiotic formulations containing pioneer colonizing species can provide benefits in intestinal development, feed efficiency and body weight gain.
  • Targeting Enterococcus faecalis HMG-CoA reductase with a non-statin inhibitor
    Bose, Sucharita; Steussy, C. Nicklaus; Lopez-Perez, Daneli; Schmidt, Tim; Kulathunga, Samadhi C.; Seleem, Mohamed N.; Lipton, Mark; Mesecar, Andrew D.; Rodwell, Victor W.; Stauffacher, Cynthia V. (Nature Portfolio, 2023-04)
    High-throughput in vitro screening and crystal structures identify a non-statin inhibitor of HMG-CoA reductase for novel antibacterial drug design. HMG-CoA reductase (HMGR), a rate-limiting enzyme of the mevalonate pathway in Gram-positive pathogenic bacteria, is an attractive target for development of novel antibiotics. In this study, we report the crystal structures of HMGR from Enterococcus faecalis (efHMGR) in the apo and liganded forms, highlighting several unique features of this enzyme. Statins, which inhibit the human enzyme with nanomolar affinity, perform poorly against the bacterial HMGR homologs. We also report a potent competitive inhibitor (Chembridge2 ID 7828315 or compound 315) of the efHMGR enzyme identified by a high-throughput, in-vitro screening. The X-ray crystal structure of efHMGR in complex with 315 was determined to 1.27 angstrom resolution revealing that the inhibitor occupies the mevalonate-binding site and interacts with several key active site residues conserved among bacterial homologs. Importantly, 315 does not inhibit the human HMGR. Our identification of a selective, non-statin inhibitor of bacterial HMG-CoA reductases will be instrumental in lead optimization and development of novel antibacterial drug candidates.
  • Hemophagocytic syndrome in a cat with Mycoplasma haemofelis infection
    Strandberg, Natalia J.; Tang, Karena M.; dos Santos, Andrea P. (Wiley, 2023-04)
    A six-year-old, castrated male domestic shorthair cat was presented for a week-long history of lethargy, acute anorexia, and adipsia. On presentation, the cat was weak with pale mucous membranes, open-mouth breathing, and mild popliteal lymphadenomegaly. Routine bloodwork revealed bicytopenia due to marked non-regenerative anemia and moderate thrombocytopenia; erythrocyte clumping was apparent on the blood smear, but no agglutination was noted on a saline dispersion test. Abdominal and thoracic imaging showed marked splenomegaly and multiple mildly enlarged lymph nodes. Aspirates from the bone marrow and spleen contained many erythrophagocytic macrophages and occasional lymphocytes containing engulfed erythrocytes. The macrophages also occasionally contained phagocytosed erythroid precursors, platelets, and leukocytes. A diagnosis of hemophagocytic syndrome was made based on the presence of bicytopenia and increased numbers of hemophagocytic macrophages in the spleen and bone marrow. Though no organisms were observed, Mycoplasma spp. infection was suspected and confirmed via PCR. To the authors' knowledge, this is the first report of a hemophagocytic syndrome in a cat with Mycoplasma haemofelis. Lymphocyte engulfment of erythrocytes has been previously reported in a cat with M. haemofelis infection. Both hemophagocytic syndrome and engulfment of erythrocytes by lymphocytes should prompt testing for Mycoplasma spp. even with a lack of evident parasitemia.