Scholarly Works, Biomedical Sciences and Pathobiology

Permanent URI for this collection

Research articles, presentations, and other scholarship


Recent Submissions

Now showing 1 - 20 of 599
  • SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice
    Pavan, María Florencia; Bok, Marina; Betanzos San Juan, Rafael; Malito, Juan Pablo; Marcoppido, Gisela Ariana; Franco, Diego Rafael; Militelo, Daniela Ayelen; Schammas, Juan Manuel; Bari, Sara Elizabeth; Stone, William; López, Krisangel; Porier, Danielle LaBrie; Muller, John Anthony; Auguste, Albert Jonathan; Yuan, Lijuan; Wigdorovitz, Andrés; Parreño, Viviana Gladys; Ibañez, Lorena Itat (MDPI, 2024-01-25)
    Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.
  • Phase I/II Trial of Urokinase Plasminogen Activator-Targeted Oncolytic Newcastle Disease Virus for Canine Intracranial Tumors
    Rossmeisl, John H.; King, Jamie N.; Robertson, John L.; Weger-Lucarelli, James; Elankumaran, Subbiah (MDPI, 2024-01-29)
    Neurotropic oncolytic viruses are appealing agents to treat brain tumors as they penetrate the blood–brain barrier and induce preferential cytolysis of neoplastic cells. The pathobiological similarities between human and canine brain tumors make immunocompetent dogs with naturally occurring tumors attractive models for the study of oncolytic virotherapies. In this dose-escalation/expansion study, an engineered Lasota NDV strain targeting the urokinase plasminogen activator system (rLAS-uPA) was administered by repetitive intravenous infusions to 20 dogs with intracranial tumors with the objectives of characterizing toxicities, immunologic responses, and neuroradiological anti-tumor effects of the virus for up to 6 months following treatment. Dose-limiting toxicities manifested as fever, hematologic, and neurological adverse events, and the maximum tolerated dose (MTD) of rLAS-uPA was 2 × 107 pfu/mL. Mild adverse events, including transient infusion reactions, diarrhea, and fever were observed in 16/18 of dogs treated at or below MTD. No infectious virus was recoverable from body fluids. Neutralizing antibodies to rLAS-uPA were present in all dogs by 2 weeks post-treatment, and viral genetic material was detected in post-treatment tumors from six dogs. Tumor volumetric reductions occurred in 2/11 dogs receiving the MTD. Systemically administered rLAS-uPA NDV was safe and induced anti-tumor effects in canine brain tumors, although modifications to evade host anti-viral immunity are needed to optimize this novel therapy.
  • Immunoregulatory and neutrophil-like monocyte subsets with distinct single-cell transcriptomic signatures emerge following brain injury
    Gudenschwager Basso, Erwin K.; Ju, Jing; Soliman, Eman; de Jager, Caroline; Wei, Xiaoran; Pridham, Kevin J.; Olsen, Michelle L.; Theus, Michelle H. (2024-02-03)
    Monocytes represent key cellular elements that contribute to the neurological sequela following brain injury. The current study reveals that trauma induces the augmented release of a transcriptionally distinct CD115+/Ly6Chi monocyte population into the circulation of mice pre-exposed to clodronate depletion conditions. This phenomenon correlates with tissue protection, blood–brain barrier stability, and cerebral blood flow improvement. Uniquely, this shifted the innate immune cell profile in the cortical milieu and reduced the expression of pro-inflammatory Il6, IL1r1, MCP-1, Cxcl1, and Ccl3 cytokines. Monocytes that emerged under these conditions displayed a morphological and gene profile consistent with a subset commonly seen during emergency monopoiesis. Single-cell RNA sequencing delineated distinct clusters of monocytes and revealed a key transcriptional signature of Ly6Chi monocytes enriched for Apoe and chitinase-like protein 3 (Chil3/Ym1), commonly expressed in pro-resolving immunoregulatory monocytes, as well as granule genes Elane, Prtn3, MPO, and Ctsg unique to neutrophil-like monocytes. The predominate shift in cell clusters included subsets with low expression of transcription factors involved in monocyte conversion, Pou2f2, Na4a1, and a robust enrichment of genes in the oxidative phosphorylation pathway which favors an anti-inflammatory phenotype. Transfer of this monocyte assemblage into brain-injured recipient mice demonstrated their direct role in neuroprotection. These findings reveal a multifaceted innate immune response to brain injury and suggest targeting surrogate monocyte subsets may foster tissue protection in the brain.
  • Systematic literature review identifying bacterial constituents in the core intestinal microbiome of rainbow trout (Oncorhynchus mykiss)
    Hines, Ian S.; Marshall, Maggie A.; Smith, Stephen A.; Kuhn, David D.; Stevens, Ann M. (Wiley, 2023-08-11)
    Fish aquaculture has become the fastest growing sector in global food production. Thus, ensuring the sustainability of aquaculture practices is of the utmost importance. Studies in higher vertebrates (i.e. mammals) have demonstrated the role of the host microbiome in physiological processes from nutrient acquisition to pathogen protection. Therefore, analysis of fish microbiomes is an important factor to consider with regard to overall animal health and welfare. Rainbow trout (Oncorhynchus mykiss) are an economically valued fish cultured worldwide. Several studies have identified microbial constituents inhabiting the intestinal tract of rainbow trout. To better elucidate some of the core constituents of the rainbow trout intestinal microbiome, this systematic literature review analysed the relative abundance results from 25 articles published on the rainbow trout intestinal microbiome from 2017 to 2021. Bacteria classified within the phyla Firmicutes and Proteobacteria were observed in every study. At the family level, Lactobacillaceae was consistently observed. Additionally, bacteria in the Actinobacteria, Bacteroides, and Tenericutes phyla were identified in at least 50% of the studies. Interestingly, Mycoplasma spp. were occasionally the most dominant organisms present in the microbiome. Overall, the results here identify bacteria that are commonly found members of the rainbow trout intestinal microbiome.
  • Identification of a Novel Hepacivirus in Southeast Asian Shrew (Crocidura fuliginosa) from Yunnan Province, China
    Guo, Ling; Li, Bei; Han, Peiyu; Dong, Na; Zhu, Yan; Li, Fuli; Si, Haorui; Shi, Zhengli; Wang, Bo; Yang, Xinglou; Zhang, Yunzhi (MDPI, 2023-11-28)
    The genus Hepacivirus contains single-stranded positive-sense RNA viruses belonging to the family Flaviviridae, which comprises 14 species. These 14 hepaciviruses have been found in different mammals, such as primates, dogs, bats, and rodents. To date, Hepacivirus has not been reported in the shrew genus of Crocidura. To study the prevalence and genetic evolution of Hepacivirus in small mammals in Yunnan Province, China, molecular detection of Hepacivirus in small mammals from Yunnan Province during 2016 and 2017 was performed using reverse-transcription polymerase chain reaction (RT-PCR). Our results showed that the overall infection rate of Hepacivirus in small mammals was 0.12% (2/1602), and the host animal was the Southeast Asian shrew (Crocidura fuliginosa) (12.5%, 2/16). Quantitative real-time PCR showed that Hepacivirus had the highest viral RNA copy number in the liver. Phylogenetic analysis revealed that the hepaciviruses obtained in this study does not belong to any designated species of hepaciviruses and forms an independent clade. To conclude, a novel hepacivirus was identified for the first time in C. fuliginosa specimens from Yunnan Province, China. This study expands the host range and viral diversity of hepaciviruses.
  • Phosphorylation of RPT6 Controls Its Ability to Bind DNA and Regulate Gene Expression in the Hippocampus of Male Rats during Memory Formation
    Farrell, Kayla; Auerbach, Aubrey; Musaus, Madeline; Navabpour, Shaghayegh; Liu, Catherine; Lin, Yu; Xie, Hehuang; Jarome, Timothy J. (Society for Neuroscience, 2024-01)
    Memory formation requires coordinated control of gene expression, protein synthesis, and ubiquitin–proteasome system (UPS)-mediated protein degradation. The catalytic component of the UPS, the 26S proteasome, contains a 20S catalytic core surrounded by two 19S regulatory caps, and phosphorylation of the 19S cap regulatory subunit RPT6 at serine 120 (pRPT6-S120) has been widely implicated in controlling activity-dependent increases in proteasome activity. Recently, RPT6 was also shown to act outside the proteasome where it has a transcription factor-like role in the hippocampus during memory formation. However, little is known about the proteasome-independent function of “free” RPT6 in the brain or during memory formation and whether phosphorylation of S120 is required for this transcriptional control function. Here, we used RNA-sequencing along with novel genetic approaches and biochemical, molecular, and behavioral assays to test the hypothesis that pRPT6-S120 functions independently of the proteasome to bind DNA and regulate gene expression during memory formation. RNA-sequencing following siRNA-mediated knockdown of free RPT6 revealed 46 gene targets in the dorsal hippocampus of male rats following fear conditioning, where RPT6 was involved in transcriptional activation and repression. Through CRISPR-dCas9-mediated artificial placement of RPT6 at a target gene, we found that RPT6 DNA binding alone may be important for altering gene expression following learning. Further, CRISPR-dCas13-mediated conversion of S120 to glycine on RPT6 revealed that phosphorylation at S120 is necessary for RPT6 to bind DNA and properly regulate transcription during memory formation. Together, we reveal a novel function for phosphorylation of RPT6 in controlling gene transcription during memory formation.
  • Sex linked behavioral and hippocampal transcriptomic changes in mice with cell-type specific Egr1 loss
    Swilley, Cody; Lin, Yu; Zheng, Yuze; Xu, Xiguang; Liu, Min; Jarome, Timothy J.; Hodes, Georgia E.; Xie, Hehuang (Frontiers, 2023-10-19)
    The transcription factor EGR1 is instrumental in numerous neurological processes, encompassing learning and memory as well as the reaction to stress. Egr1 complete knockout mice demonstrate decreased depressive or anxiety-like behavior and impaired performance in spatial learning and memory. Nevertheless, the specific functions of Egr1 in distinct cell types have been largely underexplored. In this study, we cataloged the behavioral and transcriptomic character of Nestin-Cre mediated Egr1 conditional knockout (Egr1cKO) mice together with their controls. Although the conditional knockout did not change nociceptive or anxiety responses, it triggered changes in female exploratory activity during anxiety testing. Hippocampus-dependent spatial learning in the object location task was unaffected, but female Egr1cKO mice did exhibit poorer retention during testing on a contextual fear conditioning task compared to males. RNA-seq data analyses revealed that the presence of the floxed Egr1 cassette or Nestin-Cre driver alone exerts a subtle influence on hippocampal gene expression. The sex-related differences were amplified in Nestin-Cre mediated Egr1 conditional knockout mice and female mice are more sensitive to the loss of Egr1 gene. Differentially expressed genes resulted from the loss of Egr1 in neuronal cell lineage were significantly associated with the regulation of Wnt signaling pathway, extracellular matrix, and axon guidance. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in neuronal cell lineage have distinct impacts on hippocampal gene expression in a sex-specific manner.
  • Pharmacokinetic-pharmacodynamic cutoff values for benzylpenicillin in horses to support the establishment of clinical breakpoints for benzylpenicillin antimicrobial susceptibility testing in horses
    Lallemand, Elodie A.; Bousquet-Melou, Alain; Chapuis, Laura; Davis, Jennifer L.; Ferran, Aude A.; Kukanich, Butch; Kuroda, Taisuke; Lacroix, Marlene Z.; Minamijima, Yohei; Olsen, Lena; Pelligand, Ludovic; Portugal, Felipe Ramon; Roques, Beatrice B.; Santschi, Elizabeth M.; Wilson, Katherine E.; Toutain, Pierre-Louis (Frontiers, 2023-10-25)
    Introduction: The aim of this international project was to establish a species-specific Clinical Breakpoint for interpretation of Antimicrobial Susceptibility Testing of benzylpenicillin (BP) in horses. Methods: A population pharmacokinetic model of BP disposition was developed to compute PK/PD cutoff values of BP for different formulations that are commonly used in equine medicine around the world (France, Sweden, USA and Japan). Investigated substances were potassium BP, sodium BP, procaine BP, a combination of procaine BP and benzathine BP and penethamate, a prodrug of BP. Data were collected from 40 horses that provided 63 rich profiles of BP corresponding to a total of 1022 individual BP plasma concentrations. Results: A 3-compartment disposition model was selected. For each of these formulations, the PK/PD cutoff was estimated for different dosage regimens using Monte Carlo simulations. The fAUC/MIC or fT>MIC were calculated with a free BP fraction set at 0.4. For fAUC/MIC, a target value of 72 h (for a 72h treatment) was considered. For fT>MIC, efficacy was assumed when free plasma concentrations were above the explored MIC (0.0625-2 mg/L) for 30 or 40 % of the dosing interval. For continuous infusion, a fT>MIC of 90 % was considered. It was shown that a PK/PD cutoff of 0.25 mg/L can be achieved in 90 % of horses with routine regimen (typically 22,000 IU/kg or 12.4 mg/kg per day) with IM procaine BP once a day (France, Japan, Sweden but not USA1) and with IM sodium BP at 14.07 mg/kg, twice a day or IV sodium BP infusion of 12.4 mg/kg per day. In contrast, penethamate and the combination of procaine BP and benzathine BP were unable to achieve this PK/PD cutoff not even an MIC of 0.125 mg/L. Discussion: The PK/PD cutoff of 0.25 mg/L is one dilution lower than the clinical breakpoint released by the CLSI (0.5 mg/ L). From our simulations, the CLSI clinical breakpoint can be achieved with IM procaine BP twice a day at 22,000 IU i.e. 12.4 mg/kg.
  • The effects of orally administered trazodone on ambulation and recumbency in healthy horses
    Hobbs, Kallie; Luethy, Daniela; Davis, Jennifer L.; Mallicote, Martha; Torcivia, Catherine; Kulp, Jeaneen; Stefanovski, Darko; Futterman, Catherine; Cooper, Freya; Van Eps, Andrew (Wiley, 2023-09)
    Background: Trazodone, a serotonin receptor antagonist and reuptake inhibitor, might be a useful adjunctive treatment in the initial management of horses with acute laminitis if it minimizes ambulation or encourages recumbency. Objectives: (1) Evaluate the effects of PO trazodone on ambulatory activity and recumbency in healthy horses; and (2) assess the pharmacokinetics of multiple PO doses of trazodone. Animals/Methods: In a randomized cross-over design, 8 healthy horses received placebo or trazodone at 2 doses (2.5 and 7.5 mg/kg) PO q12h for 48 hours with a 14-day washout period between treatments. Forelimb step frequency was measured using a hoof-mounted accelerometer and continuous video monitoring was used to detect recumbency. Groups were compared using repeated measures analysis of variance with Tukey's post hoc test. Trazodone and m-chlorophenylpiperazine (m-CPP) plasma concentrations were determined by ultra-high performance liquid chromatography-tandem mass spectrometry and pharmacokinetics were analyzed using noncompartmental methods. Results: Step frequency was lower in horses receiving 7.5 mg/kg trazodone than in the control group (mean step reduction: 44% ± 11%). Steps-area under the curve were significantly lower in the 7.5 mg/kg group (mean ± SD: 3375 ± 525 steps × hour) as compared to the 2.5 mg/kg group (mean ± SD: 5901 ± 2232; P =.02) and compared to control (mean ± SD: 6590 ± 1241; P =.001). No difference was found in the number of recumbent episodes (P =.92) or total duration of recumbency (P =.9). Trazodone and m-CPP achieved steady-state concentrations, with an accumulation ratio of 1.45 ± 0.2. Conclusions and Clinical Importance: Although it did not affect recumbency, trazodone at 7.5 mg/kg q12h decreased step frequency by approximately 44%.
  • Comparison of florfenicol depletion in dairy goat milk using ultra-performance liquid chromatography with tandem mass spectrometry and a commercial on-farm test
    Richards, Emily D.; Pereira, Richard V.; Davis, Jennifer L.; Rowe, Joan D.; Clapham, Maaike O.; Wetzlich, Scott E.; Rupchis, Benjamin A.; Tell, Lisa A. (Frontiers, 2022-08-29)
    Florfenicol is a broad-spectrum antibiotic commonly prescribed in an extra-label manner for treating meat and dairy goats. Scientific data in support of a milk withdrawal interval recommendation is limited to plasma pharmacokinetic data and minimal milk residue data that is limited to cattle. Therefore, a rapid residue detection test (RRDT) could be a useful resource to determine if milk samples are free of drug residues and acceptable for sale. This study compared a commercially available RRDT (Charm® FLT strips) to detect florfenicol residues in fresh milk samples from healthy adult dairy breed goats treated with florfenicol (40 mg/kg subcutaneously twice 4 days apart) with quantitative analysis of florfenicol concentrations using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). In addition, storage claims for testing bovine milk using the RRDT were assessed using stored goat milk samples. Milk samples were collected every 12 h for a minimum of 26 days. Commercial RRDT strips remained positive in individual goats ranging from 528 to 792 h (22–33 days) after the second dose, whereas, UPLC-MS/MS indicated the last detectable florfenicol concentration in milk samples ranged from 504 to 720 h (21–30 days) after the second dose. Results from stored milk samples from treated goats indicate that samples can be stored for up to 5 days in the refrigerator and 60 days in the freezer after milking prior to being tested with a low risk of false-negative test results due to drug degradation. Elevated somatic cell counts and bacterial colony were noted in some of the milk samples in this study, but further study is required to understand the impact of these quality factors on RRDT results.
  • An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol, and Penicillin G
    Chou, Wei-Chun; Tell, Lisa A.; Baynes, Ronald E.; Davis, Jennifer L.; Maunsell, Fiona P.; Riviere, Jim E.; Lin, Zhoumeng (Oxford University Press, 2022-07-28)
    Violative chemical residues in edible tissues from food-producing animals are of global public health concern. Great efforts have been made to develop physiologically based pharmacokinetic (PBPK) models for estimating withdrawal intervals (WDIs) for extralabel prescribed drugs in food animals. Existing models are insufficient to address the food safety concern as these models are either limited to 1 specific drug or difficult to be used by non-modelers. This study aimed to develop a user-friendly generic PBPK platform that can predict tissue residues and estimate WDIs for multiple drugs including flunixin, florfenicol, and penicillin G in cattle and swine. Mechanism-based in silico methods were used to predict tissue/plasma partition coefficients and the models were calibrated and evaluated with pharmacokinetic data from Food Animal Residue Avoidance Databank (FARAD). Results showed that model predictions were, in general, within a 2-fold factor of experimental data for all 3 drugs in both species. Following extralabel administration and respective U.S. FDA-approved tolerances, predicted WDIs for both cattle and swine were close to or slightly longer than FDA-approved label withdrawal times (eg, predicted 8, 28, and 7 days vs labeled 4, 28, and 4 days for flunixin, florfenicol, and penicillin G in cattle, respectively). The final model was converted to a web-based interactive generic PBPK platform. This PBPK platform serves as a user-friendly quantitative tool for real-time predictions of WDIs for flunixin, florfenicol, and penicillin G following FDA-approved label or extralabel use in both cattle and swine, and provides a basis for extrapolating to other drugs and species.
  • Expression of anti-chikungunya single-domain antibodies in transgenic Aedes aegypti reduces vector competence for chikungunya virus and Mayaro virus
    Webb, Emily M.; Compton, Austin; Rai, Pallavi; Chuong, Christina; Paulson, Sally L.; Tu, Zhijian; Weger-Lucarelli, James (Frontiers, 2023-06-12)
    Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related alphaviruses that cause acute febrile illness accompanied by an incapacitating polyarthralgia that can persist for years following initial infection. In conjunction with sporadic outbreaks throughout the sub-tropical regions of the Americas, increased global travel to CHIKV- and MAYV-endemic areas has resulted in imported cases of MAYV, as well as imported cases and autochthonous transmission of CHIKV, within the United States and Europe. With increasing prevalence of CHIKV worldwide and MAYV throughout the Americas within the last decade, a heavy focus has been placed on control and prevention programs. To date, the most effective means of controlling the spread of these viruses is through mosquito control programs. However, current programs have limitations in their effectiveness; therefore, novel approaches are necessary to control the spread of these crippling pathogens and lessen their disease burden. We have previously identified and characterized an anti-CHIKV single-domain antibody (sdAb) that potently neutralizes several alphaviruses including Ross River virus and Mayaro virus. Given the close antigenic relationship between MAYV and CHIKV, we formulated a single defense strategy to combat both emerging arboviruses: we generated transgenic Aedes aegypti mosquitoes that express two camelid-derived anti-CHIKV sdAbs. Following an infectious bloodmeal, we observed significant reduction in CHIKV and MAYV replication and transmission potential in sdAb-expressing transgenic compared to wild-type mosquitoes; thus, this strategy provides a novel approach to controlling and preventing outbreaks of these pathogens that reduce quality of life throughout the tropical regions of the world.
  • Atazanavir Resensitizes Candida auris to Azoles
    Elgammal, Yehia; Salama, Ehab A.; Seleem, Mohamed N. (American Society for Microbiology, 2023-05-17)
    Candida auris represents an urgent health threat. Here, we identified atazanavir as a potent drug capable of resensitizing C. auris clinical isolates to the activity of azole antifungals. Atazanavir was able to significantly inhibit the efflux pumps, glucose transport, and ATP synthesis of all tested isolates of C. auris. In addition, the combination of itraconazole with atazanavir-ritonavir significantly reduced the burden of azole-resistant C. auris in murine kidneys by 1.3 log10 (95%), compared to itraconazole alone.
  • Colonization efficiency of multidrug-resistant Neisseria gonorrhoeae in a female mouse model
    Kikiowo, Babatomiwa; Bandara, Aloka B.; Abutaleb, Nader S.; Seleem, Mohamed N. (Oxford University Press, 2023-10-18)
    The rapid occurrence of gonococcal resistance to all classes of antibiotics could lead to untreatable gonorrhea. Thus, development of novel anti-Neisseria gonorrhoeae drugs is urgently needed. Neisseria gonorrhoeae FA1090 is the most used in gonococcal infection mouse models because of its natural resistance to streptomycin. Streptomycin inhibits the urogenital commensal flora that permits gonococcal colonization. However, this strain is drug-susceptible and cannot be used to investigate the efficacy of novel agents against multidrug-resistant N. gonorrhoeae. Hence, to test the in vivo efficacy of new therapeutics against N. gonorrhoeae resistant to the frontline antibiotics, azithromycin, or ceftriaxone, we constructed streptomycin-resistant mutants of N. gonorrhoeae CDC-181 (azithromycin-resistant) and WHO-X (ceftriaxone-resistant). We identified the inoculum size needed to successfully colonize mice. Both mutants, CDC-181-rpsLA128G and WHO-X-rpsLA128G, colonized the genital tract of mice for 14 days with 100% colonization observed for at least 7 days. CDC-181-rpsLA128G demonstrated better colonization of the murine genital tract compared to WHO-X-rpsLA128G. Lower inoculum of WHO-X-rpsLA128G (105 and 106 CFU) colonized mice better than higher inoculum. Overall, our results indicate that CDC-181-rpsLA128G and WHO-X-rpsLA128G can colonize the lower genital tract of mice and are suitable to be used in mouse models to investigate the efficacy of antigonococcal agents.
  • Lopinavir and ritonavir act synergistically with azoles against Candida auris in vitro and in a mouse model of disseminated candidiasis
    Salama, Ehab A.; Eldesouky, Hassan E.; Elgammal, Yehia; Abutaleb, Nader S.; Seleem, Mohamed N. (Elsevier, 2023-09)
    Introduction and Objectives: The emergence of Candida auris has created a global health challenge. Azole antifungals are the most affected antifungal class because of the extraordinary capability of C. auris to develop resistance against these drugs. Here, we used a combinatorial therapeutic approach to sensitize C. auris to azole antifungals. Methods and Results: We have demonstrated the capability of the HIV protease inhibitors lopinavir and ritonavir, at clinically relevant concentrations, to be used with azole antifungals to treat C. auris infections both in vitro and in vivo. Both lopinavir and ritonavir exhibited potent synergistic interactions with the azole antifungals, particularly with itraconazole against 24/24 (100%) and 31/34 (91%) of tested C. auris isolates, respectively. Furthermore, ritonavir significantly interfered with the fungal efflux pump, resulting in a significant increase in Nile red fluorescence by 44%. In a mouse model of C. auris systemic infection, ritonavir boosted the activity of lopinavir to work synergistically with fluconazole and itraconazole and significantly reduced the kidney fungal burden by a 1.2 log (∼94%) and 1.6 log (∼97%) CFU, respectively. Conclusion: Our results urge further comprehensive assessment of azoles and HIV protease inhibitors as a novel drug regimen for the treatment of serious invasive C. auris infections.
  • Probiotics: insights and new opportunities for Clostridioides difficile intervention
    Pal, Rusha; Athamneh, Ahmad I. M.; Deshpande, Riddhi; Ramirez, Jose A. R.; Adu, Kayode T.; Muthuirulan, Pushpanathan; Pawar, Shrikant; Biazzo, Manuele; Apidianakis, Yiorgos; Sundekilde, Ulrik Kraemer; de la Fuente-Nunez, Cesar; Martens, Mark G.; Tegos, George P.; Seleem, Mohamed N. (Taylor & Francis, 2022-05-15)
    Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.
  • Efferocytosis is restricted by axon guidance molecule EphA4 via ERK/Stat6/MERTK signaling following brain injury
    Soliman, Eman; Leonard, John; Basso, Erwin K. G.; Gershenson, Ilana; Ju, Jing; Mills, Jatia; de Jager, Caroline; Kaloss, Alexandra M.; Elhassanny, Mohamed; Pereira, Daniela; Chen, Michael; Wang, Xia; Theus, Michelle H. (2023-11-09)
    Background Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. Methods We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. Results Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. Conclusions Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.
  • Remdesivir increases mtDNA copy number causing mild alterations to oxidative phosphorylation
    DeFoor, Nicole; Paul, Swagatika; Li, Shuang; Basso, Erwin K. Gudenschwager; Stevenson, Valentina; Browning, Jack L.; Prater, Anna K.; Brindley, Samantha; Tao, Ge; Pickrell, Alicia M. (Springer, 2023-12-01)
    SARS-CoV-2 causes the severe respiratory disease COVID-19. Remdesivir (RDV) was the first fast-tracked FDA approved treatment drug for COVID-19. RDV acts as an antiviral ribonucleoside (adenosine) analogue that becomes active once it accumulates intracellularly. It then diffuses into the host cell and terminates viral RNA transcription. Previous studies have shown that certain nucleoside analogues unintentionally inhibit mitochondrial RNA or DNA polymerases or cause mutational changes to mitochondrial DNA (mtDNA). These past findings on the mitochondrial toxicity of ribonucleoside analogues motivated us to investigate what effects RDV may have on mitochondrial function. Using in vitro and in vivo rodent models treated with RDV, we observed increases in mtDNA copy number in Mv1Lu cells (35.26% increase ± 11.33%) and liver (100.27% increase ± 32.73%) upon treatment. However, these increases only resulted in mild changes to mitochondrial function. Surprisingly, skeletal muscle and heart were extremely resistant to RDV treatment, tissues that have preferentially been affected by other nucleoside analogues. Although our data suggest that RDV does not greatly impact mitochondrial function, these data are insightful for the treatment of RDV for individuals with mitochondrial disease.
  • Ablative and Immunostimulatory Effects of Histotripsy Ablation in a Murine Osteosarcoma Model
    Hay, Alayna N.; Imran, Khan Mohammad; Hendricks-Wenger, Alissa; Gannon, Jessica M.; Sereno, Jacqueline; Simon, Alex; Lopez, Victor A.; Coutermarsh-Ott, Sheryl; Vlaisavljevich, Eli; Allen, Irving C.; Tuohy, Joanne L. (MDPI, 2023-10-09)
    Background: Osteosarcoma (OS) is the most frequently occurring malignant bone tumor in humans, primarily affecting children and adolescents. Significant advancements in treatment options for OS have not occurred in the last several decades, and the prognosis remains grim with only a 70% rate of 5-year survival. The objective of this study was to investigate the focused ultrasound technique of histotripsy as a novel, noninvasive treatment option for OS. Methods: We utilized a heterotopic OS murine model to establish the feasibility of ablating OS tumors with histotripsy in a preclinical setting. We investigated the local immune response within the tumor microenvironment (TME) via immune cell phenotyping and gene expression analysis. Findings: We established the feasibility of ablating heterotopic OS tumors with ablation characterized microscopically by loss of cellular architecture in targeted regions of tumors. We observed greater populations of macrophages and dendritic cells within treated tumors and the upregulation of immune activating genes 72 h after histotripsy ablation. Interpretation: This study was the first to investigate histotripsy ablation for OS in a preclinical murine model, with results suggesting local immunomodulation within the TME. Our results support the continued investigation of histotripsy as a novel noninvasive treatment option for OS patients to improve clinical outcomes and patient prognosis.
  • Development of Chimeric Hepatitis B (HBV) – Norovirus (NoV) P particle as candidate vaccine against Hepatitis B and norovirus infection
    Giri-Rachman, Ernawati Arifin; Irasonia Tan, Marselina; Ramesh, Ashwin; Fajar, Putri Ayu; Nurul Ilmi, Annisa; Retnoningrum, Debbie Sofie; Hertadi, Rukman; Irawan, Apriliani; Wojciechowska, Gladys Emmanuella Putri; Yuan, Lijuan (Elsevier, 2023-08-01)
    Introduction: Hepatitis B remains a global problem with no effective treatment. Here, a mucosal vaccine candidate was developed with HBsAg and HBcAg, to provide both prophylactic and therapeutic protection against hepatitis B. The antigens were presented using the P particle of human norovirus (HuNov). As a result, the chimeric HBV – HuNoV P particle can act as a dual vaccine for hepatitis B and HuNoV. Methods: The vaccine candidate was expressed and purified from Escherichia coli BL21 (DE3) cells. HBV-HuNoV chimeric P particles were successfully expressed and isolated, with sizes of approximately 25.64 nm. Then, the HBV-HuNoV chimeric P particles were evaluated for safety and immunogenicity in mice and gnotobiotic (Gn) pigs. After three doses (5 µg/dose in mice and 200 µg/dose in Gn pigs) of intranasal immunization, humoral and cellular immune responses, as well as toxicity, were evaluated. Results: The vaccine candidate induced strong HBV-HuNoV specific IFN-γ producing T-cell responses in the ileum, spleen, and blood of Gn pigs. Serum IgG and IgA antibodies against HBV-HuNoV chimeric P particles also increased significantly in Gn pigs. Increased HBsAg- and HuNoV-specific serum IgG responses were observed in mice and Gn pigs, although not statistically significant. The vaccine candidate did not show any toxicity in mice. Conclusions: In summary, the chimeric HBV-HuNoV P particle vaccine given intranasally was safe and induced strong cellular and humoral immune responses in Gn pig. Modifications to the vaccine structure and dosage need to be evaluated in future studies to further enhance immunogenicity and induce more balanced humoral and cellular responses.