Department of Food Science and Technology
Permanent URI for this community
Browse
Browsing Department of Food Science and Technology by Department "Biological Systems Engineering"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Analysis of crab meat volatiles as possible spoilage indicators for blue crab (Callinectes sapidus) meat by gas chromatography-mass spectrometrySarnoski, Paul J.; O'Keefe, Sean F.; Jahncke, Michael L.; Mallikarjunan, Parameswarakumar; Flick, George J. Jr. (Elsevier, 2010-10-01)Traditionally crab meat spoilage has been evaluated using sensory panels. A method was developed using solid-phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) to examine the aroma profile of blue crab (Callinectes sapidus) for chemical indicators of spoilage. The chemicals found to correlate best with spoilage were trimethylamine (TMA), ammonia, and indole over a period of 7 days. In addition, chemicals previously not identified in the aroma profile of blue crab were tentatively detected. Scan mode of the mass spectrometer was used to qualitatively determine compounds extracted from the volatile profile of spoiling blue crab by the SPME fiber. Selected ion monitoring (SIM) mode of the mass spectrometer improved resolution, identified compounds at low concentrations, and allowed spoilage related compounds to be detected in one chromatographic run without sample heating. TMA increased linearly. A significant difference in TMA concentrations were found for day 0 and day 4 samples. Indole concentrations corresponded well with sensory and microbial evaluations, in early, mid, and highly spoiled crab meat samples.
- Cyberbiosecurity: A New Perspective on Protecting US Food and Agricultural SystemDuncan, Susan E.; Reinhard, Robert; Williams, Robert C.; Ramsey, A. Ford; Thomason, Wade E.; Lee, Kiho; Dudek, Nancy; Mostaghimi, Saied; Colbert, Edward; Murch, Randall Steven (Frontiers, 2019-03-29)Our national data and infrastructure security issues affecting the "bioeconomy" are evolving rapidly. Simultaneously, the conversation about cyber security of the U.S. food and agricultural system (cyber biosecurity) is incomplete and disjointed. The food and agricultural production sectors influence over 20% of the nation's economy ($ 6.7T) and 15% of U.S. employment (43.3M jobs). The food and agricultural sectors are immensely diverse and they require advanced technologies and efficiencies that rely on computer technologies, big data, cloud-based data storage, and internet accessibility. There is a critical need to safeguard the cyber biosecurity of our bio economy, but currently protections are minimal and do not broadly exist across the food and agricultural system. Using the food safetymanagement Hazard Analysis Critical Control Point systemconcept as an introductory point of reference, we identify important features in broad food and agricultural production and food systems: dairy, food animals, row crops, fruits and vegetables, and environmental resources (water). This analysis explores the relevant concepts of cyber biosecurity from food production to the end product user (such as the consumer) and considers the integration of diverse transportation, supplier, and retailer networks. We describe common challenges and unique barriers across these systems and recommend solutions to advance the role of cyber biosecurity in the food and agricultural sectors.
- Determination of quality attributes of blue crab (Callinectes sapidus) meat by electronic nose and Draeger-Tube analysisSarnoski, Paul J.; Jahncke, Michael L.; O'Keefe, Sean F.; Mallikarjunan, Parameswarakumar; Flick, George J. Jr. (Haworth Press, 2008-01-01)In this study, five groups of sequentially spoiled crabmeat were evaluated by a trained sensory panel, and these results were compared with the findings from a Cyranose 320 Electronic Nose and Draeger gas analyzer. Using the electronic nose with filtered compressed breathing air yielded the best results. Although this approach resulted in 100% separation of the known groups, only 30% of the coded unknown samples were correctly identified. All 5 groups of samples analyzed using Draeger-Tubes were found to be significantly different at α=0.05 using a Tukey-Kramer ANOVA statistical procedure. The coded unknown samples were correctly identified at a rate of 83%. The simplicity and precision of this latter procedure may present opportunities for use of Draeger-Tubes by crab processing industries and other food processing industries as an objective method for quality control.
- Electronic Nose Analysis of Cabernet Sauvignon (Vitis vinifera L.) Grape and Wine Volatile Differences during Cold Soak and PostfermentationGardner, D. M.; Zoecklein, Bruce W.; Mallikarjunan, Kumar (American Society for Enology and Viticulture, 2011-03-01)Cold soak is a prefermentation maceration process at cold temperatures, traditionally used to enhance red wine color. This study monitored changes in Vitis vinifera L. cv. Cabernet Sauvignon volatiles using a commercial conducting polymer electronic nose (ENose) during a five-day cold soak and postfermentation. Principal component analysis (PCA) of juice volatiles detected by the ENose during cold soak showed PCI accounted for 95.7% of the variation. Various volatile associations were made with specific ENose sensors. In comparison, PCA of must chemistries had 52.4% of the variation accounted for by PCI. The PCA of wine volatiles detected by GC-MS showed PCI accounted for 97.1% of the variation between control and cold soak treatment, where control wine volatiles were associated with several ethyl esters, while cold soak wine volatiles were associated with diethyl succinate, isovaleric acid, benzyl alcohol, 3-methyl butanol, cis-3-hexenol, gamma-nonalactone, benzaldehyde, 2-methyl propanol, phenethyl acetate, 1-octanol, beta-damascenone, terpinene-4-ol, gamma-butyrolactone, ethyl acetate, hexanoic acid, citronellol, phenethyl alcohol, and n-butanol. Comparatively, PCI accounted for 100% of the total variance when using the ENose to measure volatile composition. Sensory evaluation did not demonstrate significant differences in aroma between control and cold soak wines. This study demonstrates differences in volatile chemistry between control and cold soak wines, as well as the ability to use a conducting polymer ENose as a simple tool for analysis of volatiles.
- Electronic Nose Evaluation of the Effects of Canopy Side on Cabernet franc (Vitis vinifera L.) Grape and Wine VolatilesDevarajan, Y. S.; Zoecklein, Bruce W.; Mallikarjunan, Kumar; Gardner, D. M. (American Society for Enology and Viticulture, 2011-03-01)The effect of grapevine canopy side (north versus south and east versus west) on grape and wine volatiles of Cabernet franc was evaluated during two growing seasons using two electronic nose systems based on conducting polymers and surface acoustic waves. Data from three sampling dates per season from both electronic noses were compared with physicochemistry and wine aroma sensory evaluations. Univariate and multivariate statistical analyses generally indicated grape physicochemistry indices could not differentiate consistently (p > 0.05) between canopy sides across growing seasons and sampling dates. Both electronic nose (ENose) systems provided complete discrimination of canopy sides for grapes and wine using canonical discriminant analysis. On average, the surface acoustic wave-based ENose explained <50% of variation for grapes and <60% for wine using the first principal component, compared to >80% for the conducting polymer-based ENose. Wine aroma sensory evaluation differentiated canopy sides in three of four evaluations.
- Identification of soil bacteria capable of utilizing a corn ethanol fermentation byproductPackard, Holly; Taylor, Zachary W.; Williams, Stephanie L.; Guimarães, Pedro Ivo; Toth, Jackson; Jensen, Roderick V.; Senger, Ryan S.; Kuhn, David D.; Stevens, Ann M. (PLoS, 2019-03-08)A commercial corn ethanol production byproduct (syrup) was used as a bacterial growth medium with the long-term aim to repurpose the resulting microbial biomass as a protein supplement in aquaculture feeds. Anaerobic batch reactors were used to enrich for soil bacteria metabolizing the syrup as the sole nutrient source over an eight-day period with the goal of obtaining pure cultures of facultative organisms from the reactors. Amplification of the V4 variable region of the 16S rRNA gene was performed using barcoded primers to track the succession of microbes enriched for during growth on the syrup. The resulting PCR products were sequenced using Illumina MiSeq protocols, analyzed via the program QIIME, and the alpha-diversity was calculated. Seven bacterial families were the most prevalent in the bioreactor community after eight days of enrichment: Clostridiaceae, Alicyclobacillaceae, Ruminococcaceae, Burkholderiaceae, Bacillaceae, Veillonellaceae, and Enterobacteriaceae. Pure culture isolates obtained from the reactors, and additional laboratory stock strains, capable of facultative growth, were grown aerobically in microtiter plates with the syrup substrate to monitor growth yield. Reactor isolates of interest were identified at a species level using the full 16S rRNA gene and other biomarkers. Bacillus species, commonly used as probiotics in aquaculture, showed the highest biomass yield of the monocultures examined. Binary combinations of monocultures yielded no apparent synergism between organisms, suggesting competition for nutrients instead of cooperative metabolite conversion. © 2019 Packard et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- The influence of lactose hydrolysis on the strength and sensory characteristics of vanilla ice creamMatak, Kristen E.; Wilson, James H.; Duncan, Susan E.; Wilson, Edward J.; Hackney, Cameron Raj; Sumner, Susan S. (American Society of Agricultural and Biological Engineers, 2003)Lactose hydrolysis was investigated as a method of producing a more extrudable ice cream product. Ice cream mixes were treated with lactase from the microbial sources Kluyveromyces lactis and Aspergillus oryzae to produce 0% to 100% lactose hydrolysis. Compression measurements and yield stress tests of frozen ice cream were both affected by the temperature of the samples. As the temperature decreased, the work required to compress the ice cream 10 mm (firmness) and the torsional shear stress both increased. There was a linear relationship between the firmness of lactose-hydrolyzed ice cream (0%, 80%, and 100%) and temperature (r(2) = 0.98, 0.99, and 0.97, respectively). The treated samples were significantly softer that? the control, but not different from each other There was a significant difference (p < 0.05) in ice cream dippability between the control samples (0% hydrolyzed) and the treatment groups (80% and 100% hydrolyzed). The control group was consistently harder to dip. Hydrolysis of lactase in the ice cream mix produced a softer, more extrudable product.
- Microbiota and Antibiotic Resistome of Lettuce Leaves and Radishes Grown in Soils Receiving Manure-Based Amendments Derived From Antibiotic-Treated CowsFogler, Kendall; Guron, Giselle K.P.; Wind, Lauren L.; Keenum, Ishi M.; Hession, W. Cully; Krometis, Leigh-Anne H.; Strawn, Laura K.; Pruden, Amy; Ponder, Monica A. (Frontiers, 2019-04-10)Cattle are commonly administered antibiotics, resulting in excretion of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs). The aim of this study was to determine if the use of dairy manure collected during antibiotic administration influences the bacterial microbiota of lettuce and radishes, including carriage of ARB and ARGs, when applied as a soil amendment and if composting mitigates the effects. Lettuce and radishes were grown in field-plots amended with raw manure from antibiotic-treated (cephapirin, pirlimycin) cows, composted manure from antibiotic-treated cows, composted manure from antibiotic-free cows, or an inorganic chemical fertilizer (control; 12 plots, n = 3). Surficial vegetable bacteria and antibiotic resistomes (i.e., total ARGs) were characterized using heterotrophic plate counts (HPCs) on antibiotic-containing media, 16S rRNA gene amplicon sequencing, quantitative polymerase chain reaction (qPCR), and shot-gun metagenomics. The different manure and compost amendments did not result in significant changes to the surficial vegetable bacteria at the phylum level; however, some minor changes at the class and family level were observed. Beta-diversities of the ARGs detected by shotgun metagenomic sequencing were distinctly different between vegetable type (R = 0.30, p = 0.04), with small separations between the resistomes associated with amendment type in unrarefied analysis (R = 0.27, p = 0.02), but not rarefied analysis, of the data. Network analysis highlighted that multi-drug ARG classes commonly co-occurred with plasmid-associated genes and could be a driver of co-and cross-selection of ARGs in the different conditions. Carriage of sul1 and tet(W) ARGs on vegetables quantified by qPCR were strong indicators of manure-based amendment relative to chemical fertilizer, with some reduction incurred via composting (p < 0.05). Also, increased HPCs resistant/tolerant to clindamycin, a class of antibiotics administered to cattle, were on lettuce grown in biological soil amendments relative to chemical fertilizer (p < 0.05). This study demonstrates that amending soil with rawmanure collected fromdairy cows during antibiotic administration may affect the composition of microbiota and resistomes associated with vegetable surfaces. Composting may be an important strategy to reduce some ARGs on fresh produce, but differences in the resistomes of lettuce and radishes suggest the extent of soil contact should be considered.
- Monitoring Effects of Ethanol Spray on Cabernet franc and Merlot Grapes and Wine Volatiles Using Electronic Nose SystemsZoecklein, Bruce W.; Devarajan, Y. S.; Mallikarjunan, Kumar; Gardner, D. M. (American Society for Enology and Viticulture, 2011-09-01)The ability of two electronic nose systems (conducting polymer and surface acoustic wave-based) to differentiate volatiles of grapes and wines treated with an aqueous ethanol spray (5% v/v) at veraison was evaluated. Ethanol spray induced fruit ethylene production immediately posttreatment, which then declined progressively. The electronic nose evaluations of grape volatiles were compared with Cabernet franc and Merlot physicochemistry and with wine gas chromatographic and aroma sensory data. Canonical discriminant and principal component analysis found that both electronic nose systems and the physicochemical measures (Brix, TA, pH, color intensity and hue, total phenols, glycosides, and berry weight) were able to discriminate between ethanol-treated and untreated grapes and wines for both cultivars. Grape physicochemical treatment differences were due mainly to variations in hue, phenolic-free glycosides, and total phenols. Aroma sensory evaluations using a consumer panel differentiated between ethanol treatments and controls for Merlot, but not for Cabernet franc wines.
- Optimum Cooking Conditions for Shrimp and Atlantic SalmonBrookmire, Lauren; Mallikarjunan, P.; Jahncke, M.; Grisso, Robert D. (2013)The quality and safety of a cooked food product depends on many variables, including the cooking method and time–temperature combinations employed. The overall heating profile of the food can be useful in predicting the quality changes and microbial inactivation occurring during cooking. Mathematical modeling can be used to attain the complex heating profile of a food product during cooking. Studies were performed to monitor the product heating profile during the baking and boiling of shrimp and the baking and pan-frying of salmon. Product color, texture, moisture content, mass loss, and pressed juice were evaluated during the cooking processes as the products reached the internal temperature recommended by the FDA. Studies were also performed on the inactivation of Salmonella cocktails in shrimp and salmon. To effectively predict inactivation during cooking, the Bigelow, Fermi distribution, and Weibull distribution models were applied to the Salmonella thermal inactivation data.Minimum cooking temperatures necessary to destroy Salmonella in shrimp and salmon were determined. The heating profiles of the 2 products were modeled using the finite difference method. Temperature data directly from the modeled heating profiles were then used in the kinetic modeling of quality change and Salmonella inactivation during cooking. The optimum cooking times for a 3-log reduction of Salmonella and maintaining 95% of quality attributes are 100, 233, 159, 378, 1132, and 399 s for boiling extra jumbo shrimp, baking extra jumbo shrimp, boiling colossal shrimp, baking colossal shrimp, baking Atlantic salmon, and pan frying Atlantic Salmon, respectively.