Destination Areas (DAs)
Permanent URI for this community
Destination Areas provide faculty and students with new tools to identify and solve complex, 21st-century problems in which Virginia Tech already has significant strengths and can take a global leadership role. The initiative represents the next step in the evolution of the land-grant university to meet economic and societal needs of the world. DAs connect the full span of relevant knowledge necessary for addressing issues comprehensively. Humanistic, scientific, and technological perspectives are addressed in relationship to one another and they are treated as complementary to overcome traditional academic boundaries, such as those that separate the STEM fields and liberal arts. [http://provost.vt.edu/destination-areas.html]
Browse
Browsing Destination Areas (DAs) by Department "Center for Coastal Studies"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Addressing the Contribution of Indirect Potable Reuse to Inland Freshwater SalinizationBhide, Shantanu V.; Grant, Stanley B.; Parker, Emily A.; Rippy, Megan A.; Godrej, Adil N.; Kaushal, Sujay S.; Prelewicz, Gregory; Saji, Niffy; Curtis, Shannon; Vikesland, Peter J.; Maile-Moskowitz, Ayella; Edwards, Marc A.; Lopez, Kathryn; Birkland, Thomas A.; Schenk, Todd (2021-02-02)Inland freshwater salinity is rising worldwide, a phenomenon called the freshwater salinization syndrome (FSS). We investigate a potential conflict between managing the FSS and indirect potable reuse, the practice of augmenting water supplies through the addition of reclaimed wastewater to surface waters and groundwaters. From time-series data collected over 25 years, we quantify the contributions of three salinity sources—a wastewater reclamation facility and two rapidly urbanizing watersheds—to the rising concentration of sodium (a major ion associated with the FSS) in a regionally important drinking water reservoir in the Mid-Atlantic United States. Sodium mass loading to the reservoir is primarily from watershed runoff during wet weather and reclaimed wastewater during dry weather. Across all timescales evaluated, sodium concentration in the reclaimed wastewater is higher than in outflow from the two watersheds. Sodium in reclaimed wastewater originates from chemicals added during wastewater treatment, industrial and commercial discharges, human excretion, and down-drain disposal of drinking water and sodium-rich household products. Thus, numerous opportunities exist to reduce the contribution of indirect potable reuse to sodium pollution at this site, and the FSS more generally. These efforts will require deliberative engagement with a diverse community of watershed stakeholders and careful consideration of the local political, social, and environmental context.
- Considering COVID-19 through the Lens of Hazard and Disaster ResearchRitchie, Liesel A.; Gill, Duane A. (MDPI, 2021-06-30)Decades of social science research have taught us much about how individuals, groups, and communities respond to disasters. The findings of this research have helped inform emergency management practices, including disaster preparedness, response, recovery, and mitigation. In the context of the COVID-19 pandemic, most of us—researchers or not—have attempted or are attempting to make sense of what is going on around us. In this article, we assert that we need not examine the pandemic in a vacuum; rather, we can draw upon scholarly and practical sources to inform our thinking about this 21st century catastrophe. The pandemic has provided an “unfortunate opportunity” to revisit what we know about disaster phenomena, including catastrophes, and to reconsider the findings of research from over the years. Drawing upon academic research, media sources, and our own observations, we focus on the U.S. and employ disaster characteristics framework of (1) etiology or origins; (2) physical damage characteristics; (3) disaster phases or cycles; (4) vulnerability; (5) community impacts; and (6) individual impacts to examine perspectives about the ways in which the ongoing pandemic is both similar and dissimilar to conceptualizations about the social dimensions of hazards and disasters. We find that the COVID-19 pandemic is not merely a disaster; rather, it is a catastrophe.
- Predicting Solute Transport Through Green Stormwater Infrastructure With Unsteady Transit Time Distribution TheoryParker, E. A.; Grant, Stanley B.; Cao, Y.; Rippy, Megan A.; McGuire, Kevin J.; Holden, P. A.; Feraud, M.; Avasarala, S.; Liu, H.; Hung, W. C.; Rugh, M.; Jay, J.; Peng, J.; Shao, S.; Li, D. (2021-02)In this study, we explore the use of unsteady transit time distribution (TTD) theory to model solute transport in biofilters, a popular form of nature-based or "green" storm water infrastructure (GSI). TTD theory has the potential to address many unresolved challenges associated with predicting pollutant fate and transport through these systems, including unsteadiness in the water balance (time-varying inflows, outflows, and storage), unsteadiness in pollutant loading, time-dependent reactions, and scale-up to GSI networks and urban catchments. From a solution to the unsteady age conservation equation under uniform sampling, we derive an explicit expression for solute breakthrough during and after one or more storm events. The solution is calibrated and validated with breakthrough data from 17 simulated storms at a field-scale biofilter test facility in Southern California, using bromide as a conservative tracer. TTD theory closely reproduces bromide breakthrough concentrations, provided that lateral exchange with the surrounding soil is accounted for. At any given time, according to theory, more than half of the water in storage is from the most recent storm, while the rest is a mixture of penultimate and earlier storms. Thus, key management endpoints, such as the pollutant treatment credit attributable to GSI, are likely to depend on the evolving age distribution of water stored and released by these systems.