Destination Areas (DAs)
Permanent URI for this community
Destination Areas provide faculty and students with new tools to identify and solve complex, 21st-century problems in which Virginia Tech already has significant strengths and can take a global leadership role. The initiative represents the next step in the evolution of the land-grant university to meet economic and societal needs of the world. DAs connect the full span of relevant knowledge necessary for addressing issues comprehensively. Humanistic, scientific, and technological perspectives are addressed in relationship to one another and they are treated as complementary to overcome traditional academic boundaries, such as those that separate the STEM fields and liberal arts. [http://provost.vt.edu/destination-areas.html]
Browse
Browsing Destination Areas (DAs) by Title
Now showing 1 - 20 of 1371
Results Per Page
Sort Options
- 2021 GAP Report Launch: Strengthening the Climate For Sustainable Agricultural GrowthSteensland, Ann (Virginia Tech College of Agriculture and Life Sciences, 2021-10-20)During the launch of the 2021 Global Agricultural Productivity Report (GAP Report), the newest data on agricultural productivity across the globe was revealed to be well below the Global Agricultural Productivity Index target. Through a solution-oriented discussion, experts across the globe discuss what we can do now to address the looming crisis.
- A 3-D Finite-Element Minipig Model to Assess Brain Biomechanical Responses to Blast ExposureSundaramurthy, Aravind; Kote, Vivek Bhaskar; Pearson, Noah; Boiczyk, Gregory M.; McNeil, Elizabeth M.; Nelson, Allison J.; Subramaniam, Dhananjay Radhakrishnan; Rubio, Jose E.; Monson, Kenneth; Hardy, Warren N.; VandeVord, Pamela J.; Unnikrishnan, Ginu; Reifman, Jaques (Frontiers, 2021-12-17)Despite years of research, it is still unknown whether the interaction of explosion-induced blast waves with the head causes injury to the human brain. One way to fill this gap is to use animal models to establish “scaling laws” that project observed brain injuries in animals to humans. This requires laboratory experiments and high-fidelity mathematical models of the animal head to establish correlates between experimentally observed blast-induced brain injuries and model-predicted biomechanical responses. To this end, we performed laboratory experiments on Göttingen minipigs to develop and validate a three-dimensional (3-D) high-fidelity finite-element (FE) model of the minipig head. First, we performed laboratory experiments on Göttingen minipigs to obtain the geometry of the cerebral vasculature network and to characterize brain-tissue and vasculature material properties in response to high strain rates typical of blast exposures. Next, we used the detailed cerebral vasculature information and species-specific brain tissue and vasculature material properties to develop the 3-D high-fidelity FE model of the minipig head. Then, to validate the model predictions, we performed laboratory shock-tube experiments, where we exposed Göttingen minipigs to a blast overpressure of 210 kPa in a laboratory shock tube and compared brain pressures at two locations. We observed a good agreement between the model-predicted pressures and the experimental measurements, with differences in maximum pressure of less than 6%. Finally, to evaluate the influence of the cerebral vascular network on the biomechanical predictions, we performed simulations where we compared results of FE models with and without the vasculature. As expected, incorporation of the vasculature decreased brain strain but did not affect the predictions of brain pressure. However, we observed that inclusion of the cerebral vasculature in the model changed the strain distribution by as much as 100% in regions near the interface between the vasculature and the brain tissue, suggesting that the vasculature does not merely decrease the strain but causes drastic redistributions. This work will help establish correlates between observed brain injuries and predicted biomechanical responses in minipigs and facilitate the creation of scaling laws to infer potential injuries in the human brain due to exposure to blast waves.
- 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehiclesMaurya, Deepam; Khaleghian, Seyedmeysam; Sriramdas, Rammohan; Kumar, Prashant; Kishore, Ravi Anant; Kang, Min-Gyu; Kumar, Vireshwar; Song, Hyun-Cheol; Lee, Seul-Yi; Yan, Yongke; Park, Jung-Min (Jerry); Taheri, Saied; Priya, Shashank (2020-10-26)The transition of autonomous vehicles into fleets requires an advanced control system design that relies on continuous feedback from the tires. Smart tires enable continuous monitoring of dynamic parameters by combining strain sensing with traditional tire functions. Here, we provide breakthrough in this direction by demonstrating tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis. Ink of graphene based material was designed to directly print strain sensor for measuring tire-road interactions under varying driving speeds, normal load, and tire pressure. A secure wireless data transfer hardware powered by a piezoelectric patch is implemented to demonstrate self-powered sensing and wireless communication capability. Combined, this study significantly advances the design and fabrication of cost-effective smart tires by demonstrating practical self-powered wireless strain sensing capability. Designing efficient sensors for smart tires for autonomous vehicles remains a challenge. Here, the authors present a tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis.
- A 4-year longitudinal neuroimaging study of cognitive control using latent growth modeling: developmental changes and brain-behavior associationsKim-Spoon, Jungmeen; Herd, Toria; Brieant, Alexis; Elder, Jacob; Lee, Jacob; Deater-Deckard, Kirby; Casas, Brooks (2021-08-15)Despite theoretical models suggesting developmental changes in neural substrates of cognitive control in adolescence, empirical research has rarely examined intraindividual changes in cognitive control-related brain activation using multi-wave multivariate longitudinal data. We used longitudinal repeated measures of brain activation and behavioral performance during the multi-source interference task (MSIT) from 167 adolescents (53% male) who were assessed annually over four years from ages 13 to 17 years. We applied latent growth modeling to delineate the pattern of brain activation changes over time and to examine longitudinal associations between brain activation and behavioral performance. We identified brain regions that showed differential change patterns: (1) the fronto-parietal regions that involved bilateral insula, bilateral middle frontal gyrus, left pre-supplementary motor area, left inferior parietal lobule, and right precuneus; and (2) the rostral anterior cingulate cortex (rACC) region. Longitudinal confirmatory factor analyses of the fronto-parietal regions revealed strong measurement invariance across time implying that multivariate functional magnetic resonance imaging data during cognitive control can be measured reliably over time. Latent basis growth models indicated that fronto-parietal activation decreased over time, whereas rACC activation increased over time. In addition, behavioral performance data, age-related improvement was indicated by a decreasing trajectory of intraindividual variability in response time across four years. Testing longitudinal brain-behavior associations using multivariate growth models revealed that better behavioral cognitive control was associated with lower fronto-parietal activation, but the change in behavioral performance was not related to the change in brain activation. The current findings suggest that reduced effects of cognitive interference indicated by fronto-parietal recruitment may be a marker of a maturing brain that underlies better cognitive control performance during adolescence.
- 7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved with Intracranial Irreversible ElectroporationGarcia, Paulo A.; Rossmeisl, John H. Jr.; Robertson, John L.; Olson, JohnD.; Johnson, Annette J.; Ellis, Thomas L.; Davalos, Rafael V. (PLOS, 2012-11-30)The blood-brain-barrier (BBB) presents a significant obstacle to the delivery of systemically administered chemotherapeutics for the treatment of brain cancer. Irreversible electroporation (IRE) is an emerging technology that uses pulsed electric fields for the non-thermal ablation of tumors. We hypothesized that there is a minimal electric field at which BBB disruption occurs surrounding an IRE-induced zone of ablation and that this transient response can be measured using gadolinium (Gd) uptake as a surrogate marker for BBB disruption. The study was performed in a Good Laboratory Practices (GLP) compliant facility and had Institutional Animal Care and Use Committee (IACUC) approval. IRE ablations were performed in vivo in normal rat brain (n = 21) with 1-mm electrodes (0.45 mm diameter) separated by an edge-to-edge distance of 4 mm. We used an ECM830 pulse generator to deliver ninety 50-ms pulse treatments (0, 200, 400, 600, 800, and 1000 V/cm) at 1 Hz. The effects of applied electric fields and timing of Gd administration (25, +5, +15, and +30 min) was assessed by systematically characterizing IRE-induced regions of cell death and BBB disruption with 7.0-T magnetic resonance imaging (MRI) and histopathologic evaluations. Statistical analysis on the effect of applied electric field and Gd timing was conducted via Fit of Least Squares with a = 0.05 and linear regression analysis. The focal nature of IRE treatment was confirmed with 3D MRI reconstructions with linear correlations between volume of ablation and electric field. Our results also demonstrated that IRE is an ablation technique that kills brain tissue in a focal manner depicted by MRI (n = 16) and transiently disrupts the BBB adjacent to the ablated area in a voltage-dependent manner as seen with Evan’s Blue (n = 5) and Gd administration.
- Aberrant Calcium Signaling in Astrocytes Inhibits Neuronal Excitability in a Human Down Syndrome Stem Cell ModelMizuno, Grace O.; Wang, Yinxue; Shi, Guilai; Wang, Yizhi; Sun, Junqing; Papadopoulos, Stelios; Broussard, Gerard J.; Unger, Elizabeth K.; Deng, Wenbin; Weick, Jason; Bhattacharyya, Anita; Chen, Chao-Yin; Yu, Guoqiang; Looger, Loren L.; Tian, Lin (Elsevier, 2018-07-10)Down syndrome (DS) is a genetic disorder that causes cognitive impairment. The staggering effects associated with an extra copy of human chromosome 21 (HSA21) complicates mechanistic understanding of DS pathophysiology. We examined the neuronastrocyte interplay in a fully recapitulated HSA21 trisomy cellular model differentiated from DS-patientderived induced pluripotent stem cells (iPSCs). By combining calciumimaging with genetic approaches, we discovered the functional defects of DS astroglia and their effects on neuronal excitability. Compared with control isogenic astroglia, DS astroglia exhibited more-frequent spontaneous calcium fluctuations, which reduced the excitability of co-cultured neurons. Furthermore, suppressed neuronal activity could be rescued by abolishing astrocytic spontaneous calcium activity either chemically by blocking adenosine-mediated signaling or genetically by knockdown of inositol triphosphate (IP3) receptors or S100B, a calcium binding protein coded on HSA21. Our results suggest a mechanism by which DS alters the function of astrocytes, which subsequently disturbs neuronal excitability.
- Aberrant early growth of individual trigeminal sensory and motor axons in a series of mouse genetic models of 22q11.2 deletion syndromeMotahari, Zahra; Maynard, Thomas M.; Popratiloff, Anastas; Moody, Sally A.; LaMantia, Anthony-Samuel (2020-09-15)We identified divergent modes of initial axon growth that prefigure disrupted differentiation of the trigeminal nerve (CN V), a cranial nerve essential for suckling, feeding and swallowing (S/F/S), a key innate behavior compromised in multiple genetic developmental disorders including DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS). We combined rapid in vivo labeling of single CN V axons in LgDel(+/-) mouse embryos, a genomically accurate 22q11.2DS model, and 3D imaging to identify and quantify phenotypes that could not be resolved using existing methods. We assessed these phenotypes in three 22q11.2-related genotypes to determine whether individual CN V motor and sensory axons wander, branch and sprout aberrantly in register with altered anterior-posterior hindbrain patterning and gross morphological disruption of CN V seen in LgDel(+/-). In the additional 22q11.2-related genotypes: Tbx1(+/-), Ranbp1(+/-), Ranbp1(+/-) and LgDel(+/-):Raldh2(+/-); axon phenotypes are seen when hindbrain patterning and CN V gross morphology is altered, but not when it is normal or restored toward WT. This disordered growth of CN V sensory and motor axons, whose appropriate targeting is critical for optimal S/F/S, may be an early, critical determinant of imprecise innervation leading to inefficient oropharyngeal function associated with 22q11.2 deletion from birth onward.
- Abrogation of atypical neurogenesis and vascular-derived EphA4 prevents repeated mild TBI-induced learning and memory impairmentsGreer, Kisha; Gudenschwager-Basso, Erwin K.; Kelly, Colin; Cash, Alison; Kowalski, Elizabeth A.; Cerna, Steven; Ocampo, Collin Tanchanco; Wang, Xia; Theus, Michelle H. (2020-09-21)Brain injury resulting from repeated mild traumatic insult is associated with cognitive dysfunction and other chronic co-morbidities. The current study tested the effects of aberrant neurogenesis in a mouse model of repeated mild traumatic brain injury (rmTBI). Using Barnes Maze analysis, we found a significant reduction in spatial learning and memory at 24 days post-rmTBI compared to repeated sham (rSham) injury. Cell fate analysis showed a greater number of BrdU-labeled cells which co-expressed Prox-1 in the DG of rmTBI-injured mice which coincided with enhanced cFos expression for neuronal activity. We then selectively ablated dividing neural progenitor cells using a 7-day continuous infusion of Ara-C prior to rSham or rmTBI. This resulted in attenuation of cFos and BrdU-labeled cell changes and prevented associated learning and memory deficits. We further showed this phenotype was ameliorated in EphA4f.(/f)/Tie2-Cre knockout compared to EphA4f.(/f) wild type mice, which coincided with altered mRNA transcript levels of MCP-1, Cx43 and TGF beta. These findings demonstrate that cognitive decline is associated with an increased presence of immature neurons and gene expression changes in the DG following rmTBI. Our data also suggests that vascular EphA4-mediated neurogenic remodeling adversely affects learning and memory behavior in response to repeated insult.
- Acetylcholine Receptor Activation as a Modulator of Glioblastoma InvasionThompson, Emily G.; Sontheimer, Harald (MDPI, 2019-10-05)Grade IV astrocytomas, or glioblastomas (GBMs), are the most common malignant primary brain tumor in adults. The median GBM patient survival of 12–15 months has remained stagnant, in spite of treatment strategies, making GBMs a tremendous challenge clinically. This is at least in part due to the complex interaction of GBM cells with the brain microenvironment and their tendency to aggressively infiltrate normal brain tissue. GBMs frequently invade supratentorial brain regions that are richly innervated by neurotransmitter projections, most notably acetylcholine (ACh). Here, we asked whether ACh signaling influences the biology of GBMs. We examined the expression and function of known ACh receptors (AChRs) in large GBM datasets, as well as, human GBM cell lines and patient-derived xenograft lines. Using RNA-Seq data from the “The Cancer Genome Atlas” (TCGA), we confirmed the expression of AChRs and demonstrated the functionality of these receptors in GBM cells with time-lapse calcium imaging. AChR activation did not alter cell proliferation or migration, however, it significantly increased cell invasion through complex extracellular matrices. This was due to the enhanced activity of matrix metalloproteinase-9 (MMP-9) from GBM cells, which we found to be dependent on an intracellular calcium-dependent mechanism. Consistent with these findings, AChRs were significantly upregulated in regions of GBM infiltration in situ (Ivy Glioblastoma Atlas Project) and elevated expression of muscarinic AChR M3 correlated with reduced patient survival (TCGA). Data from the Repository for Molecular Brain Neoplasia Data (REMBRANDT) dataset also showed the co-expression of choline transporters, choline acetyltransferase, and vesicular acetylcholine transporters, suggesting that GBMs express all the proteins required for ACh synthesis and release. These findings identify ACh as a modulator of GBM behavior and posit that GBMs may utilize ACh as an autocrine signaling molecule.
- Acoustic differences between healthy and depressed people: a cross-situation studyWang, Jingying; Zhang, Lei; Liu, Tianli; Pan, Wei; Hu, Bin; Zhu, Tingshao (2019-10-15)Background Abnormalities in vocal expression during a depressed episode have frequently been reported in people with depression, but less is known about if these abnormalities only exist in special situations. In addition, the impacts of irrelevant demographic variables on voice were uncontrolled in previous studies. Therefore, this study compares the vocal differences between depressed and healthy people under various situations with irrelevant variables being regarded as covariates. Methods To examine whether the vocal abnormalities in people with depression only exist in special situations, this study compared the vocal differences between healthy people and patients with unipolar depression in 12 situations (speech scenarios). Positive, negative and neutral voice expressions between depressed and healthy people were compared in four tasks. Multiple analysis of covariance (MANCOVA) was used for evaluating the main effects of variable group (depressed vs. healthy) on acoustic features. The significances of acoustic features were evaluated by both statistical significance and magnitude of effect size. Results The results of multivariate analysis of covariance showed that significant differences between the two groups were observed in all 12 speech scenarios. Although significant acoustic features were not the same in different scenarios, we found that three acoustic features (loudness, MFCC5 and MFCC7) were consistently different between people with and without depression with large effect magnitude. Conclusions Vocal differences between depressed and healthy people exist in 12 scenarios. Acoustic features including loudness, MFCC5 and MFCC7 have potentials to be indicators for identifying depression via voice analysis. These findings support that depressed people’s voices include both situation-specific and cross-situational patterns of acoustic features.
- Active inference and agency: optimal control without cost functionsFriston, Karl J.; Samothrakis, Spyridon; Montague, P. Read (Springer, 2012-08-03)This paper describes a variational free-energy formulation of (partially observable) Markov decision problems in decision making under uncertainty. We show that optimal control can be cast as active inference. In active inference, both action and posterior beliefs about hidden states minimise a free energy bound on the negative log-likelihood of observed states, under a generative model. In this setting, reward or cost functions are absorbed into prior beliefs about state transitions and terminal states. Effectively, this converts optimal control into a pure inference problem, enabling the application of standard Bayesian filtering techniques.We then consider optimal trajectories that rest on posterior beliefs about hidden states in the future. Crucially, this entails modelling control as a hidden state that endows the generative model with a representation of agency. This leads to a distinction between models with and without inference on hidden control states; namely, agency-free and agency-based models, respectively.
- Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the AmygdalaJarome, Timothy J.; Werner, Craig T.; Kwapis, Janine L.; Helmstetter, Fred J. (PLOS, 2011-09)Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradationspecific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses.
- Adaptive Brain and Behavior Across the Lifespan(Virginia Tech, 2016-05)Our aim is to understand adaptation and improve human lives in various contexts. Inequalities and environments in which people live affect their health and behavior — and their success of remaining healthy for a lifetime. Virginia Tech has embraced the idea of understanding how the brain is linked to human experiences, constraints, and behavioral choices that not only affect neural wellbeing, but overall health. The effort is aided by new, sophisticated technologies (e.g., ones that map the brain in real time or allow clearer diagnosis of disease). Individuals must continue to function in the world in terms of addictions or life consequences from poor decision-making, developmental disabilities such as cerebral palsy, brain cancer, and other health challenges. Pursuit of innovative science to cure diseases is an important thrust of this Destination Area, in concert with evidence-based treatments and interdisciplinary training of individuals who work with people who are affected for the long-term by diseases and atypical disorders and conditions. Virginia Tech is mobilizing all emerging tools to improve people’s lives. Today, neuroscientists understand our brain in action, at the level of molecules, cells, circuits, systems, and behavior — but more remains to be understood. Likewise, brain diseases and traumatic brain injuries, which can result from diverse causes that range from drug addiction to physical impact, have been difficult for society to grasp. Our current knowledge and research in both the human and animal domain will provide substantial opportunities for “brain exploration” with an intention to solve human health issues and address societal issues and behaviors across the lifespan. A vital humanities and social science approach connected to neuroscience and medical approaches promises to move solutions to brain and behavior problems forward. We will also focus on social aspects of human development as people live longer, through the creation and application of new technologies.
- Adaptive Key Protection in Complex Cryptosystems with AttributesWang, Zilong; Yao, Danfeng (Daphne); Feng, Rongquan (Department of Computer Science, Virginia Polytechnic Institute & State University, 2012)In the attribute-based encryption (ABE) model, attributes (as opposed to identities) are used to encrypt messages, and all the receivers with qualifying attributes can decrypt the ciphertext. However, compromised attribute keys may affect the communications of many users who share the same access control policies. We present the notion of forward-secure attribute-based encryption (fs-ABE) and give a concrete construction based on bilinear map and decisional bilinear Diffie-Hellman assumption. Forward security means that a compromised private key by an adversary at time t does not break the confidentiality of the communication that took place prior to t. We describe how to achieve both forward security and encryption with attributes, and formally prove our security against the adaptive chosen-ciphertext adversaries. Our scheme is non-trivial, and the key size only grows polynomially with logN (where N is the number of time periods). We further generalize our scheme to support the individualized key-updating schedule for each attribute, which provides a finer granularity for key management. Our insights on the required properties that an ABE scheme needs to possess in order to be forward-secure compatible are useful beyond the specific fs-ABE construction given. We raise an open question at the end of the paper on the escrow problem of the master key in ABE schemes.
- Addressing the Contribution of Indirect Potable Reuse to Inland Freshwater SalinizationBhide, Shantanu V.; Grant, Stanley B.; Parker, Emily A.; Rippy, Megan A.; Godrej, Adil N.; Kaushal, Sujay S.; Prelewicz, Gregory; Saji, Niffy; Curtis, Shannon; Vikesland, Peter J.; Maile-Moskowitz, Ayella; Edwards, Marc A.; Lopez, Kathryn; Birkland, Thomas A.; Schenk, Todd (2021-02-02)Inland freshwater salinity is rising worldwide, a phenomenon called the freshwater salinization syndrome (FSS). We investigate a potential conflict between managing the FSS and indirect potable reuse, the practice of augmenting water supplies through the addition of reclaimed wastewater to surface waters and groundwaters. From time-series data collected over 25 years, we quantify the contributions of three salinity sources—a wastewater reclamation facility and two rapidly urbanizing watersheds—to the rising concentration of sodium (a major ion associated with the FSS) in a regionally important drinking water reservoir in the Mid-Atlantic United States. Sodium mass loading to the reservoir is primarily from watershed runoff during wet weather and reclaimed wastewater during dry weather. Across all timescales evaluated, sodium concentration in the reclaimed wastewater is higher than in outflow from the two watersheds. Sodium in reclaimed wastewater originates from chemicals added during wastewater treatment, industrial and commercial discharges, human excretion, and down-drain disposal of drinking water and sodium-rich household products. Thus, numerous opportunities exist to reduce the contribution of indirect potable reuse to sodium pollution at this site, and the FSS more generally. These efforts will require deliberative engagement with a diverse community of watershed stakeholders and careful consideration of the local political, social, and environmental context.
- Adolescent Emotionality and Emotion Regulation in the Context of Parent Emotion Socialization Among Adolescents with Neurodevelopmental Disorders: A Call to Action with Pilot DataBreaux, Rosanna; Eadeh, Hana-May; Swanson, Courtney S.; McQuade, Julia D. (Springer, 2021-06-30)To date, only three studies have examined the role of emotion socialization in the emotional functioning of youth with neurodevelopmental disorders. As such, this review article with pilot data sought to provide a call to action and first step in addressing this limited research body. Pilot data was collected with 18 adolescents (Mage = 13.5, SD = 1.6; 70% male) with a neurodevelopmental disorder and their primary caregiver. All adolescents were diagnosed with attention-deficit/hyperactivity disorder and displayed a range of comorbid disorders: autism spectrum disorder (27.8%), anxiety (66.7%), depression (44.4%), and disruptive behavior disorders (50%). Adolescents and caregivers completed a conflict discussion task while physiological, observational, and self-report measures of emotion socialization and emotional functioning were measured. Observed supportive parent emotion socialization behaviors were significantly associated with more observed adaptive emotion regulation strategies, and decreased observed and adolescent-reported negative affect, whereas non-supportive emotion socialization behaviors were associated with more observed negative affect and less observed adaptive emotion regulation strategies. Our pilot findings support growing research suggesting that adaptive parent emotion socialization practices can help foster less negative emotionality and better emotion regulation in youth with neurodevelopment disorders. We make a call to action for more emotion socialization research focused on youth with neurodevelopmental disorders, and propose four important directions for future research: 1) Research examining emotion socialization behaviors during daily life, 2) Understanding the nuanced role of emotion socialization practices, 3) Considering diversity in emotion socialization practices with clinical populations, and 4) Longitudinal and intervention research studies.
- Adoption of High-Performance Housing Technologies Among U.S. Homebuilding Firms, 2000 Through 2010McCoy, Andrew P.; Koebel, C. Theodore; Sanderford, Andrew R.; Franck, Christopher T.; Keefe, Matthew J. (HUD, 2015)This article describes foundational processes of a larger project examining U.S. home builders’ choices to adopt innovative housing technologies that improve the environmental performance of new single-family homes. Home builders sit at a critical juncture in the housing creation decision chain and can influence how new housing units change related to energy consumption, and the units they produce can also reflect shifting technology, demography, and policy landscapes. With some exceptions, U.S. home builders have been characterized as being slow to adopt or resistant to the adoption of product and process innovations, largely because of path-dependent and risk-averse behavior. This article focuses on home builder choices by analyzing a summary of innovation adoption literature and that literature’s relationship to homebuilding. Researchers then describe analytical approaches for studying home builders’ choices and markets at a Core Based Statistical Area level, the data and statistical methodologies used in the study, and the policy implications for promoting energy efficiency in housing. Future work will draw on the foundation presented in this article to specify versions of this generic model and report results using improved quantitative analyses.
- Advanced sequencing approaches detected insertions of viral and human origin in the viral genome of chronic hepatitis E virus patientsPapp, C-Patrick; Biedermann, Paula; Harms, Dominik; Wang, Bo; Kebelmann, Marianne; Choi, Mira; Helmuth, Johannes; Corman, Victor M.; Thuermer, Andrea; Altmann, Britta; Klink, Patrycja; Hofmann, Joerg; Bock, C-Thomas (Nature Portfolio, 2022-02-02)The awareness of hepatitis E virus (HEV) increased significantly in the last decade due to its unexpectedly high prevalence in high-income countries. There, infections with HEV-genotype 3 (HEV-3) are predominant which can progress to chronicity in immunocompromised individuals. Persistent infection and antiviral therapy can select HEV-3 variants; however, the spectrum and occurrence of HEV-3 variants is underreported. To gain in-depth insights into the viral population and to perform detailed characterization of viral genomes, we used a new approach combining long-range PCR with next-generation and third-generation sequencing which allowed near full-length sequencing of HEV-3 genomes. Furthermore, we developed a targeted ultra-deep sequencing approach to assess the dynamics of clinically relevant mutations in the RdRp-region and to detect insertions in the HVR-domain in the HEV genomes. Using this new approach, we not only identified several insertions of human (AHNAK, RPL18) and viral origin (RdRp-derived) in the HVR-region isolated from an exemplary sample but detected a variant containing two different insertions simultaneously (AHNAK- and RdRp-derived). This finding is the first HEV-variant recognized as such showing various insertions in the HVR-domain. Thus, this molecular approach will add incrementally to our current knowledge of the HEV-genome organization and pathogenesis in chronic hepatitis E.
- Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid AreasCastellini, Mirko; Di Prima, Simone; Stewart, Ryan D.; Biddoccu, Marcella; Rahmati, Mehdi; Alagna, Vincenzo (MDPI, 2022-06-07)Conserving water resources is a current challenge that will become increasingly urgent in future due to climate change. The arid and semi-arid areas of the globe are expected to be particularly affected by changes in water availability. Consequently, advances in ecohydrology sciences, i.e., the interplay between ecological and hydrological processes, are necessary to enhance the understanding of the critical zone, optimize water resources’ usage in arid and semi-arid areas, and mitigate climate change. This Special Issue (SI) collected 10 original contributions on sustainable land management and the optimization of water resources in fragile environments that are at elevated risk due to climate change. In this context, the topics mainly concern transpiration, evapotranspiration, groundwater recharge, deep percolation, and related issues. The collection of manuscripts presented in this SI represents knowledge of ecohydrology. It is expected that ecohydrology will have increasing applications in the future. Therefore, it is realistic to assume that efforts to increase environmental sustainability and socio-economic development, with water as a central theme, will have a greater chance of success.
- Advancing the Global Land Grant Institution: Creating a Virtual Environment to Re-envision Extension and Advance GSS-related Research, Education, and CollaborationHall, Ralph P.; Polys, Nicholas F.; Sforza, Peter M.; Eubank, Stephen D.; Lewis, Bryan L.; Krometis, Leigh-Anne H.; Pollyea, Ryan M.; Schoenholtz, Stephen H.; Sridhar, Venkataramana; Crowder, Van; Lipsey, John; Christie, Maria Elisa; Glasson, George E.; Scherer, Hannah H.; Davis, A. Jack; Dunay, Robert J.; King, Nathan T.; Muelenaer, Andre A.; Muelenaer, Penelope; Rist, Cassidy; Wenzel, Sophie (Virginia Tech, 2017-05-15)The vision for this project has emerged from several years of research, teaching, and service in Africa and holds the potential to internationalize education at Virginia Tech and in our partner institutions in Malawi. The vision is simple, to develop a state-of-the-art, data rich, virtual decision-support and learning environment that enables local-, regional-, and national-level actors in developed and developing regions to make decisions that improve resilience and sustainability. Achieving these objectives will require a system that can combine biogeophysical and sociocultural data in a way that enables actors to understand and leverage these data to enhance decision-making at various levels. The project will begin by focusing on water, agricultural, and health systems in Malawi, and can be expanded over time to include any sector or system in any country. The core ideas are inherently scalable...