Destination Areas (DAs)
Permanent URI for this community
Destination Areas provide faculty and students with new tools to identify and solve complex, 21st-century problems in which Virginia Tech already has significant strengths and can take a global leadership role. The initiative represents the next step in the evolution of the land-grant university to meet economic and societal needs of the world.
Browse
Browsing Destination Areas (DAs) by Department "Biomedical Sciences and Pathobiology"
Now showing 1 - 20 of 31
Results Per Page
Sort Options
- Abrogation of atypical neurogenesis and vascular-derived EphA4 prevents repeated mild TBI-induced learning and memory impairmentsGreer, Kisha; Gudenschwager-Basso, Erwin K.; Kelly, Colin; Cash, Alison; Kowalski, Elizabeth A.; Cerna, Steven; Ocampo, Collin Tanchanco; Wang, Xia; Theus, Michelle H. (2020-09-21)Brain injury resulting from repeated mild traumatic insult is associated with cognitive dysfunction and other chronic co-morbidities. The current study tested the effects of aberrant neurogenesis in a mouse model of repeated mild traumatic brain injury (rmTBI). Using Barnes Maze analysis, we found a significant reduction in spatial learning and memory at 24 days post-rmTBI compared to repeated sham (rSham) injury. Cell fate analysis showed a greater number of BrdU-labeled cells which co-expressed Prox-1 in the DG of rmTBI-injured mice which coincided with enhanced cFos expression for neuronal activity. We then selectively ablated dividing neural progenitor cells using a 7-day continuous infusion of Ara-C prior to rSham or rmTBI. This resulted in attenuation of cFos and BrdU-labeled cell changes and prevented associated learning and memory deficits. We further showed this phenotype was ameliorated in EphA4f.(/f)/Tie2-Cre knockout compared to EphA4f.(/f) wild type mice, which coincided with altered mRNA transcript levels of MCP-1, Cx43 and TGF beta. These findings demonstrate that cognitive decline is associated with an increased presence of immature neurons and gene expression changes in the DG following rmTBI. Our data also suggests that vascular EphA4-mediated neurogenic remodeling adversely affects learning and memory behavior in response to repeated insult.
- Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2–Priming Protease TMPRSS2Azouz, N. P.; Klingler, A. M.; Callahan, Victoria; Akhrymuk, Ivan V.; Elez, K.; Raich, L.; Henry, B. M.; Benoit, J. L.; Benoit, S. W.; Noé, F.; Kehn-Hall, Kylene; Rothenberg, M. E. (2021-01-01)Background: Host proteases have been suggested to be crucial for dissemination of MERS, SARS-CoV, and SARS-CoV-2 coronaviruses, but the relative contribution of membrane versus intracellular proteases remains controversial. Transmembrane serine protease 2 (TMPRSS2) is regarded as one of the main proteases implicated in the coronavirus S protein priming, an important step for binding of the S protein to the angiotensin-converting enzyme 2 (ACE2) receptor before cell entry. Methods: We developed a cell-based assay to identify TMPRSS2 inhibitors. Inhibitory activity was established in SARS-CoV-2 viral load systems. Results: We identified the human extracellular serine protease inhibitor (serpin) alpha 1 anti-trypsin (A1AT) as a novel TMPRSS2 inhibitor. Structural modeling revealed that A1AT docked to an extracellular domain of TMPRSS2 in a conformation that is suitable for catalysis, resembling similar serine protease inhibitor complexes. Inhibitory activity of A1AT was established in a SARS-CoV-2 viral load system. Notably, plasma A1AT levels were associated with COVID-19 disease severity. Conclusions: Our data support the key role of extracellular serine proteases in SARS CoV-2 infections and indicate that treatment with serpins, particularly the FDA-approved drug A1AT, may be effective in limiting SARS-CoV-2 dissemination by affecting the surface of the host cells.
- Altered toxicological endpoints in humans from common quaternary ammonium compound disinfectant exposureHrubec, Terry C.; Seguin, Ryan P.; Xu, L.; Cortopassi, G. A.; Datta, S.; Hanlon, Alexandra L.; Lozano, A. J.; McDonald, V. A.; Healy, C. A.; Anderson, T. C.; Musse, N. A.; Williams, R. T. (Elsevier, 2021-01-01)Humans are frequently exposed to Quaternary Ammonium Compounds (QACs). QACs are ubiquitously used in medical settings, restaurants, and homes as cleaners and disinfectants. Despite their prevalence, nothing is known about the health effects associated with chronic low-level exposure. Chronic QAC toxicity, only recently identified in mice, resulted in developmental, reproductive, and immune dysfunction. Cell based studies indicate increased inflammation, decreased mitochondrial function, and disruption of cholesterol synthesis. If these findings translate to human toxicity, multiple physiological processes could be affected. This study tested whether QAC concentrations could be detected in the blood of 43 human volunteers, and whether QAC concentrations influenced markers of inflammation, mitochondrial function, and cholesterol synthesis. QAC concentrations were detected in 80 % of study participants. Blood QACs were associated with increase in inflammatory cytokines, decreased mitochondrial function, and disruption of cholesterol homeostasis in a dose dependent manner. This is the first study to measure QACs in human blood, and also the first to demonstrate statistically significant relationships between blood QAC and meaningful health related biomarkers. Additionally, the results are timely in light of the increased QAC disinfectant exposure occurring due to the SARS-CoV-2 pandemic. Main Findings: This study found that 80 % of study participants contained QACs in their blood; and that markers of inflammation, mitochondrial function, and sterol homeostasis varied with blood QAC concentration.
- Better understanding and prediction of antiviral peptides through primary and secondary structure feature importanceChowdhury, Abu Sayed; Reehl, Sarah M.; Kehn-Hall, Kylene; Bishop, Barney M.; Webb-Robertson, Bobbie-Jo M. (2020-11-06)The emergence of viral epidemics throughout the world is of concern due to the scarcity of available effective antiviral therapeutics. The discovery of new antiviral therapies is imperative to address this challenge, and antiviral peptides (AVPs) represent a valuable resource for the development of novel therapies to combat viral infection. We present a new machine learning model to distinguish AVPs from non-AVPs using the most informative features derived from the physicochemical and structural properties of their amino acid sequences. To focus on those features that are most likely to contribute to antiviral performance, we filter potential features based on their importance for classification. These feature selection analyses suggest that secondary structure is the most important peptide sequence feature for predicting AVPs. Our Feature-Informed Reduced Machine Learning for Antiviral Peptide Prediction (FIRM-AVP) approach achieves a higher accuracy than either the model with all features or current state-of-the-art single classifiers. Understanding the features that are associated with AVP activity is a core need to identify and design new AVPs in novel systems. The FIRM-AVP code and standalone software package are available at https://github.com/pmartR/FIRM-AVP with an accompanying web application at https://msc-viz.emsl.pnnl.gov/AVPR.
- Brucella abortus RB51 ΔleuB expressing Salmonella FliC conjugated gonadotropins reduces mouse fetal numbers: A possible feral swine brucellosis immunocontraceptive vaccineWaldrop, Steven Grant; Smith, Garrett P.; Boyle, Stephen M.; Sriranganathan, Nammalwar (2021-02)Population and health management of wildlife is a key to environmental health, domestic herd health, and ultimately public health. Many different methods including: surgical sterilization, poison baits, and sponsored hunting programs have been used in the attempt to control populations of various nuisance animal species. Particular interest has been given to immunocontraception through wildlife vaccination protocols. This study specifically looked at the potential immunocontraceptive and protective properties of a Brucella abortus RB51 Delta leuB vaccine expressing Salmonella typhimurium FliC conjugated to porcine follicle stimulating hormone beta subunit (FSH beta) or gonadotropin releasing hormone (GnRH) DNA sequences. B. abortus RB51 Delta leuB pNS4-TrcD-FliC-FSH beta (RB51LFSH beta) and B. abortus RB51 Delta leuB pNS4-TrcD-FliC-GnRH (RB51LGnRH) were tested in a pilot breeding study with BALB/c mice, and a significant reduction in fertility characteristics was observed in both male and female mice. Ultimately, this study provides support to test these vaccine candidates in feral swine, a destructive invasive species in the United States of America.
- Conserving the Genetic Diversity of Domesticated LivestockSponenberg, D. Phillip (MDPI, 2020-07-17)Domesticated animals live and produce in an environment influenced by both natural and human factors. These agricultural environments are important to maintain for human survival and also for their interactions with natural environments. Effective conservation of domesticated biodiversity can help to assure sustainable agricultural systems that minimize negative influences on natural environments. In addition, livestock biodiversity is a component of total biodiversity and for several species is the only remaining source of diversity because the wild ancestors are now extinct. Conservation of livestock biodiversity depends on cultural and biological approaches. Each of these has differential importance depending on the specific location of the genetic resource as well as the human culture in which it resides. Effective global conservation blends these in different measures to assure positive outcomes that succeed in securing the genetic resource as well as its contribution to human survival and well-being.
- Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoesLevi, Laura I.; Rezelj, Veronica V.; Henrion-Lacritick, Annabelle; Erazo, Diana; Boussier, Jeremy; Vallet, Thomas; Bernhauerova, Veronika; Suzuki, Yasutsugu; Carrau, Lucia; Weger-Lucarelli, James; Saleh, Maria-Carla; Vignuzzi, Marco (2021-02)Defective viral genomes (DVGs) are truncated and/or rearranged viral genomes produced during virus replication. Described in many RNA virus families, some of them have interfering activity on their parental virus and/or strong immunostimulatory potential, and are being considered in antiviral approaches. Chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes spp. that infected millions of humans in the last 15 years. Here, we describe the DVGs arising during CHIKV infection in vitro in mammalian and mosquito cells, and in vivo in experimentally infected Aedes aegypti mosquitoes. We combined experimental and computational approaches to select DVG candidates most likely to have inhibitory activity and showed that, indeed, they strongly interfere with CHIKV replication both in mammalian and mosquito cells. We further demonstrated that some DVGs present broad-spectrum activity, inhibiting several CHIKV strains and other alphaviruses. Finally, we showed that pre-treating Aedes aegypti with DVGs prevented viral dissemination in vivo. Author summary Defective viral genomes (DVGs) are produced during virus replication. On their own they cannot replicate, but some of them can compete with wild-type virus for viral and/or cellular resources. For chikungunya virus, interference by DVGs has not been described. Here, we use a new approach based on experimental evolution and computational analysis to characterize all DVGs generated in a virus population and identify those with the highest antiviral potential. We confirm their antiviral activity in both mammalian and mosquito host environments and show that some can broadly interfere with other strains or related alphaviruses. Finally, we show that DVGs can inhibit virus dissemination in mosquitoes.
- Detection of Q129H Immune Escape Mutation in Apparently Healthy Hepatitis B Virus Carriers in Southwestern NigeriaAdesina, Olufisayo Adeyemi; Akanbi, Olusola Aanuoluwapo; Opaleye, Oladele Oluyinka; Japhet, Margaret Oluwatoyin; Wang, Bo; Oluyege, Adekemi Olubukunola; Klink, Patrycja; Bock, C.-Thomas (MDPI, 2021-06-29)As the global effort to eradicate hepatitis B continues, immune escape mutations (IEMs) and drug resistance mutations (DRMs) affecting its diagnosis, treatment, and prevention are compromising this goal. However, knowledge about the prevalence and circulation of these mutations in Nigeria is scarce. Serum samples (n = 199) from apparently healthy prospective blood donors, pregnant women, and individuals presenting with fever in southwestern Nigeria were analyzed for the presence of IEMs and DRMs by means of nested PCR in the HBV S (HBs) and HBV polymerase (Pol) genes, followed by phylogenetic and mutational analyses. In total, 25.1% (n = 50/199) of samples were positive for HBV, as measured by PCR. In 41 samples (20.6%), both fragments could be amplified, whereas the HBs gene and the Pol gene fragment alone were detected in 0.5% (n = 1/199) and 4% (n = 8/199) of samples, respectively. Sequences were successfully obtained for all 42 HBs gene fragments but for only 31/49 Pol gene fragments (totaling 73 sequences from 44 individuals). All sequences were identified as HBV genotype E. IEMs were present in 18.2% (n = 8/44) of the sequences of HBV-positive individuals with available sequences. IEM Q129H was detected in eight out of the 44 (18.2%) HBV isolates sequenced in this study; however, no DRMs were observed. This study confirms the circulation of HBV IEMs and reports the presence of Q129H IEM for the first time in Nigeria. Intensified research on the dynamics of IEM is necessary in order to enhance the elimination of HBV.
- Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresisSalmanzadeh, Alireza; Kittur, Harsha; Sano, Michael B.; Roberts, Paul C.; Schmelz, Eva M.; Davalos, Rafael V. (American Institute of Physics, 2012-06-01)Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699973] Actual pdf downloaded from NCBI.
- Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injuryHazy, Amanda; Bochicchio, Lauren; Oliver, Andrea; Xie, Eric; Geng, Shuo; Brickler, Thomas; Xie, Hehuang David; Li, Liwu; Allen, Irving C.; Theus, Michelle H. (Springer Nature, 2019-06-12)The peripheral immune system is a major regulator of the pathophysiology associated with traumatic brain injury (TBI). While age-at-injury influences recovery from TBI, the differential effects on the peripheral immune response remain unknown. Here, we investigated the effects of TBI on gene expression changes in murine whole blood using RNAseq analysis, gene ontology and network topology-based key driver analysis. Genome-wide comparison of CCI-injured peripheral whole blood showed a significant increase in genes involved in proteolysis and oxidative-reduction processes in juvenile compared to adult. Conversely, a greater number of genes, involved in migration, cytokine-mediated signaling and adhesion, were found reduced in CCI-injured juvenile compared to CCI-injured adult immune cells. Key driver analysis also identified G-protein coupled and novel pattern recognition receptor (PRR), P2RY10, as a central regulator of these genes. Lastly, we found Dectin-1, a c-type lectin PRR to be reduced at the protein level in both naive neutrophils and on infiltrating immune cells in the CCI-injured juvenile cortex. These findings demonstrate a distinct peripheral inflammatory profile in juvenile mice, which may impact the injury and repair response to brain trauma.
- Dopamine Stimulates Propagation of Toxoplasma gondii Tachyzoites in Human Fibroblast and Primary Neonatal Rat Astrocyte Cell CulturesStrobl, Jeannine S.; Goodwin, David G.; Rzigalinski, Beverly A.; Lindsay, David S. (American Society of Parasitology, 2012-12-01)Toxoplasma gondii is an obligate intracellular parasite often found in the brain of humans. Research has shown a correlation between prevalence of antibody titers to T. gondii and psychological illness in humans. Recent studies indicate that individuals seropositive for T. gondii antibodies are more likely to develop psychotic disorders including schizophrenia, which is associated with changes in the dopamine neurotransmitter system. Dopamine in the brain may play a role in proliferation, chemoattraction, infection efficiency, or stage conversion of T. gondii. Because tachyzoites are the first developmental stage to reach the brain, the present study was conducted to determine the effects of dopamine on their development in vitro. In human fibroblast host cells, dopamine was added at either 100 nM or 250 nM to cell culture media, and the numbers of tachyzoites produced at 48 hr were determined and compared to vehicle-treated controls. An increase of tachyzoite numbers and increased destruction in cell monolayer were observed at both concentrations of dopamine. Dopamine used at 250 nM caused a significant (P < 0.05) increase in tachyzoites counts compared to controls. Dopamine antagonists (10 mu M) did not significantly alter dopamine-stimulated tachyzoite production in human fibroblasts. In primary neonatal rat astrocyte cell cultures, dopamine (200 mu M) significantly (P < 0.05) increased numbers of intracellular tachyzoites after 24 hr. The role that this increase plays in tachyzoite production under the stimulus of dopamine in the modulation of neural infection in humans awaits further studies.
- EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activitySun, Zhixiong; Xu, Xiguang; He, Jianlin; Murray, Alexander; Sun, Ming-an; Wei, Xiaoran; Wang, Xia; McCoig, Emmarose; Xie, Evan; Jiang, Xi; Li, Liwu; Zhu, Jinsong; Chen, Jianjun; Morozov, Alexei; Pickrell, Alicia M.; Theus, Michelle H.; Xie, Hehuang David (2019-08-29)Life experience can leave lasting marks, such as epigenetic changes, in the brain. How life experience is translated into storable epigenetic information remains largely unknown. With unbiased data-driven approaches, we predicted that Egr1, a transcription factor important for memory formation, plays an essential role in brain epigenetic programming. We performed EGR1 ChIP-seq and validated thousands of EGR1 binding sites with methylation patterns established during postnatal brain development. More specifically, these EGR1 binding sites become hypomethylated in mature neurons but remain heavily methylated in glia. We further demonstrated that EGR1 recruits a DNA demethylase TET1 to remove the methylation marks and activate downstream genes. The frontal cortices from the knockout mice lacking Egr1 or Tet1 share strikingly similar profiles in both gene expression and DNA methylation. In summary, our study reveals EGR1 programs the brain methylome together with TET1 providing new insight into how life experience may shape the brain methylome.
- Evaluation of ebselen in resolving a methicillin-resistant Staphylococcus aureus infection of pressure ulcers in obese and diabetic miceMohammad, Haroon; Abutaleb, Nader S.; Dieterly, Alexandra M.; Lyle, L. Tiffany; Seleem, Mohamed N. (2021-02-22)Pressure ulcers (PUs) are a source of morbidity in individuals with restricted mobility including individuals that are obese or diabetic. Infection of PUs with pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), impairs ulcers from healing. The present study evaluated ebselen as a topical antibacterial to treat MRSA-infected PUs. Against two different S. aureus strains, including MRSA USA300, resistance to ebselen did not emerge after 14 consecutive passages. Resistance to mupirocin emerged after only five passages. Additionally, ebselen was found to exert a modest postantibiotic effect of five hours against two MRSA strains. Ebselen was subsequently evaluated in MRSA-infected PUs in two models using obese and diabetic mice. In obese mice, topical ebselen (89.2% reduction) and oral linezolid (84.5% reduction) similarly reduced the burden of MRSA in infected PUs. However, in diabetic mice, topical ebselen (45.8% reduction in MRSA burden) was less effective. Histopathological evaluation of ulcers in diabetic mice determined that ebselen treatment resulted in fewer bacterial colonies deep within the dermis and that the treatment exhibited evidence of epithelial regeneration. Topical mupirocin was superior to ebselen in reducing MRSA burden in infected PUs both in obese (98.7% reduction) and diabetic (99.3% reduction) mice. Ebselen's antibacterial activity was negatively impacted as the bacterial inoculum was increased from 10(5) CFU/mL to 10(7) CFU/mL. These results suggest that a higher dose of ebselen, or a longer course of treatment, may be needed to achieve a similar effect as mupirocin in topically treating MRSA-infected pressure ulcers.
- Evaluation of the 50% Infectious Dose of Human Norovirus Cin-2 in Gnotobiotic Pigs: A Comparison of Classical and Contemporary Methods for Endpoint EstimationRamesh, Ashwin; Parreño, Viviana; Schmidt, Philip J.; Lei, Shaohua; Zhong, Weiming; Jiang, Xi; Emelko, Monica B.; Yuan, Lijuan (MDPI, 2020-08-28)Human noroviruses (HuNoVs) are the leading causative agents of epidemic and sporadic acute gastroenteritis that affect people of all ages worldwide. However, very few dose–response studies have been carried out to determine the median infectious dose of HuNoVs. In this study, we evaluated the median infectious dose (ID50) and diarrhea dose (DD50) of the GII.4/2003 variant of HuNoV (Cin-2) in the gnotobiotic pig model of HuNoV infection and disease. Using various mathematical approaches (Reed–Muench, Dragstedt–Behrens, Spearman–Karber, exponential, approximate beta-Poisson dose–response models, and area under the curve methods), we estimated the ID50 and DD50 to be between 2400–3400 RNA copies, and 21,000–38,000 RNA copies, respectively. Contemporary dose–response models offer greater flexibility and accuracy in estimating ID50. In contrast to classical methods of endpoint estimation, dose–response modelling allows seamless analyses of data that may include inconsistent dilution factors between doses or numbers of subjects per dose group, or small numbers of subjects. Although this investigation is consistent with state-of-the-art ID50 determinations and offers an advancement in clinical data analysis, it is important to underscore that such analyses remain confounded by pathogen aggregation. Regardless, challenging virus strain ID50 determination is crucial for identifying the true infectiousness of HuNoVs and for the accurate evaluation of protective efficacies in pre-clinical studies of therapeutics, vaccines and other prophylactics using this reliable animal model.
- Feasibility and accuracy of 3D printed patient-specific skull contoured brain biopsy guidesShinn, Richard L.; Park, Clair; DeBose, Kyrille; Hsu, Fang-Chi; Cecere, Thomas E.; Rossmeisl, John H. Jr. (2021-07)Objective Design 3D printed skull contoured brain biopsy guides (3D-SCGs) from computed tomography (CT) or T1-weighted magnetic resonance imaging (T1W MRI). Study Design Feasibility study. Sample Population Five beagle dog cadavers and two client-owned dogs with brain tumors. Methods Helical CT and T1W MRI were performed on cadavers. Planned target point was the head of the caudate nucleus. Three-dimensional-SCGs were created from CT and MRI using commercially available open-source software. Using 3D-SCGs, biopsy needles were placed into the caudate nucleus in cadavers, and CT was performed to assess needle placement accuracy, followed by histopathology. Three-dimensional-SCGs were then created and used to perform in vivo brain tumor biopsies. Results No statistical difference was found between the planned target point and needle placement. Median needle placement error for all planned target points was 2.7 mm (range: 0.86-4.5 mm). No difference in accuracy was detected between MRI and CT-designed 3D-SCGs. Median needle placement error for the CT was 2.8 mm (range: 0.86-4.5 mm), and 2.2 mm (range: 1.7-2.7 mm) for MRI. Biopsy needles were successfully placed into the target in the two dogs with brain tumors and biopsy was successfully acquired in one dog. Conclusion Three-dimensional-SCGs designed from CT or T1W MRI allowed needle placement within 4.5 mm of the intended target in all procedures, resulting in successful biopsy in one of two live dogs. Clinical Significance This feasibility study justifies further evaluation of 3D-SCGs as alternatives in facilities that do not have access to stereotactic brain biopsy.
- Galangin ameliorates experimental autoimmune encephalomyelitis in mice via modulation of cellular immunityTan, Kok-Tong; Li, Shiming; Panny, Lauren; Lin, Chi-Chien; Lin, Shih-Chao (2021-03-23)Multiple sclerosis (MS) causes neurologic disabilities that effect musculature, sensory systems, and vision. This is largely due to demyelination of nerve fibers caused by chronic inflammation. Corticosteroid treatments ameliorate symptoms of MS, but do not successfully cure the disease itself. In the current study, the application of galangin, a phytochemical flavonoid extracted from the ginger family of Alpinis officinarum, on experimental autoimmune encephalomyelitis (EAE; mouse model for MS) was explored. This study investigated prophylactic and therapeutic activity of the drug and mechanisms by which it acts. The results revealed that galangin at 40 and 80 mg/kg could lower the incidence rate of MS, and alleviate clinical/pathological manifestations. Mice administered galangin presented with less limb paralysis, lower levels of inflammatory cell infiltrates, and decreased demyelination compared to vehicle controls. Levels of CD4(+)IFN gamma(+) (T(H)1) and CD4(+)IL-17A(+) (T(H)17) cells in the spinal cords of EAE mice administered galangin were reduced and both cell types were not capable of expansion. More surprisingly, galangin inhibited antigen presentation and cytokine production by dendritic cells (DC). Formation of cytokines like IL-6, IL-12, and IL-23 were significantly decreased due to galangin in co-culture models of DC and T-cells. Taken together, the data lead one to conclude that galangin could potentially be used as a potent immunoregulatory agent to alleviate clinical symptoms and reduce the prevalence of MS.
- Genome Number and Size Polymorphism in Zika Virus Infectious UnitsSexton, Nicole R.; Bellis, Eric D.; Murrieta, Reyes A.; Spangler, Mark Cole; Cline, Parker J.; Weger-Lucarelli, James; Ebel, Gregory D. (2021-03)Zika virus (ZIKV; Flaviviridae, Flavivirus) is an arthropod-borne infection that can result in severe outcomes, particularly in fetuses infected in utero. It has been assumed that infection by ZIKV, as well as other viruses, is largely initiated by individual virus particles binding to and entering a cell. However, recent studies have demonstrated that multiple virus particles are frequently delivered to a cell simultaneously and that this collective particle delivery enhances infection. ZIKV is maintained in nature between Aedes aegypti mosquitos and vertebrate hosts, including humans. Human infection is initiated through the injection of a relatively small initial inoculum comprised of a genetically complex virus population. Since most mutations decrease virus fitness, collective particle transmission could benefit ZIKV and other arthropod-borne diseases by facilitating the maintenance of genetic complexity and adaptability during infection or through other mechanisms. Therefore, we utilized a barcoded ZIKV to quantify the number of virus genomes that initiate a plaque. We found that individual plaques contain a mean of 10 infecting viral genomes (range, 1 to 212). Few plaques contained more than two dominant genomes. To determine whether multigenome infectious units consist of collectively transmitting virions, infectious units of ZIKV were then separated mechanically by centrifugation, and heavier fractions were found to contain more genomes per plaque-forming unit, with larger diameters. Finally, larger/heavier infectious units reformed after removal. These data suggest that ZIKV populations consist of a variety of infectious unit sizes, likely mostly made up of aggregates, and only rarely begin with a single virus genome. IMPORTANCE The arthropod-borne Zika virus (ZIKV) infects humans and can cause severe neurological sequelae, particularly in fetuses infected in utero. How this virus has been able to spread across vast geological ranges and evolve in new host populations is not yet understood. This research demonstrates a novel mechanism of ZIKV transmission through multigenome aggregates, providing insight into ZIKV evolution, immunologic evasion, and better future therapeutic design. This study shows that ZIKV plaques result from collections of genomes rather than individual genomes, increasing the potential for interactions between ZIKV genotypes.
- Hydrogel particles improve detection of SARS-CoV-2 RNA from multiple sample typesBarclay, R. A.; Akhrymuk, Ivan V.; Patnaik, A.; Callahan, Victoria; Lehman, C.; Andersen, P.; Barbero, R.; Barksdale, S.; Dunlap, R.; Goldfarb, D.; Jones-Roe, T.; Kelly, R.; Kim, B.; Miao, S.; Munns, A.; Munns, D.; Patel, S.; Porter, E.; Ramsey, R.; Sahoo, S.; Swahn, O.; Warsh, J.; Kehn-Hall, Kylene; Lepene, Benjamin (Springer, 2020-12-01)Here we present a rapid and versatile method for capturing and concentrating SARS-CoV-2 from contrived transport medium and saliva samples using affinity-capture magnetic hydrogel particles. We demonstrate that the method concentrates virus from 1 mL samples prior to RNA extraction, substantially improving detection of virus using real-time RT-PCR across a range of viral titers (100–1,000,000 viral copies/mL) and enabling detection of virus using the 2019 nCoV CDC EUA Kit down to 100 viral copies/mL. This method is compatible with commercially available nucleic acid extraction kits (i.e., from Qiagen) and a simple heat and detergent method that extracts viral RNA directly off the particle, allowing a sample processing time of 10 min. We furthermore tested our method in transport medium diagnostic remnant samples that previously had been tested for SARS-CoV-2, showing that our method not only correctly identified all positive samples but also substantially improved detection of the virus in low viral load samples. The average improvement in cycle threshold value across all viral titers tested was 3.1. Finally, we illustrate that our method could potentially be used to enable pooled testing, as we observed considerable improvement in the detection of SARS-CoV-2 RNA from sample volumes of up to 10 mL.
- In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococciAbutaleb, Nader S.; Elhassanny, Ahmed E. M.; Flaherty, Daniel P.; Seleem, Mohamed N. (PeerJ, 2021-03-30)Vancomycin-resistant enterococci (VRE) are a serious public health threat and a leading cause of healthcare-associated infections. Bacterial resistance to antibiotics recommended for the treatment of enterococcal infections complicates the management of these infections. Hence, there is a critical need for the discovery of new anti-VRE agents. We previously reported carbonic anhydrase inhibitors (CAIs) as new potent VRE inhibitors. In the present study, the activity of the CAI, dorzolamide was evaluated against VRE both in vitro and in vivo. Dorzolamide exhibited potent activity against a panel of clinical VRE isolates, with minimum inhibitory concentration (MIC) values ranging from 1 µg/mL to 8 µg/mL. A killing kinetics experiment determined that dorzolamide exhibited a bacteriostatic effect against VRE, which was similar to the drug of choice (linezolid). Dorzolamide interacted synergistically with gentamicin against four strains of VRE, and exhibited an additive interaction with gentamicin against six VRE strains, reducing gentamicin’s MIC by several folds. Moreover, dorzolamide outperformed linezolid in an in vivo VRE colonization reduction mouse model. Dorzolamide significantly reduced the VRE burden in fecal samples of mice by 2.9-log10 (99.9%) and 3.86-log10 (99.99%) after 3 and 5 days of treatment, respectively. Furthermore, dorzolamide reduced the VRE count in the cecal (1.74-log10 (98.2%) reduction) and ileal contents (1.5-log10 (96.3%)) of mice, which was superior to linezolid. Collectively, these results indicate that dorzolamide represents a promising treatment option that warrants consideration as a supplement to current therapeutics used for VRE infections.
- Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cellsSalmanzadeh, Alireza; Sano, Michael B.; Gallo-Villanueva, R. C.; Roberts, Paul C.; Schmelz, Eva M.; Davalos, Rafael V. (American Institute of Physics, 2013-01-01)In this study, the electrical properties of four different stages of mouse ovarian surface epithelial (MOSE) cells were investigated using contactless dielectrophoresis (cDEP). This study expands the work from our previous report describing for the first time the crossover frequency and cell specific membrane capacitance of different stages of cancer cells that are derived from the same cell line. The specific membrane capacitance increased as the stage of malignancy advanced from 15.39 +/- 1.54 mF m(-2) for a non-malignant benign stage to 26.42 +/- 1.22 mF m(-2) for the most aggressive stage. These differences could be the result of morphological variations due to changes in the cytoskeleton structure, specifically the decrease of the level of actin filaments in the cytoskeleton structure of the transformed MOSE cells. Studying the electrical properties of MOSE cells provides important information as a first step to develop cancer-treatment techniques which could partially reverse the cytoskeleton disorganization of malignant cells to a morphology more similar to that of benign cells. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4788921] Actual pdf downloaded from NCBI.