Destination Areas (DAs)
Permanent URI for this community
Destination Areas provide faculty and students with new tools to identify and solve complex, 21st-century problems in which Virginia Tech already has significant strengths and can take a global leadership role. The initiative represents the next step in the evolution of the land-grant university to meet economic and societal needs of the world.
Browse
Browsing Destination Areas (DAs) by Title
Now showing 1 - 20 of 2131
Results Per Page
Sort Options
- 100163 - Materials Strategic Growth Area Research Workshop(VT Continuing and Professional Education, 2016)The Economical and Sustainable Materials Strategic Growth Area (Materials SGA) is committed to the development of cross-disciplinary teams that will tackle critical scientific materials challenges related to our pillars of interest: health, energy, environment, and resilient infrastructure. We view these challenges through an atoms/molecules-to-systems lens, so our research and education efforts will span the full scope and sequence of materials use from discovery and computational modeling to processing, manufacturing, and implementation. Our research pillars connect our mission with those of all the existing Destination Areas and Strategic Growth areas. In particular, Adaptive Brain and Behavior, Intelligent Infrastructure for Human Centered Communities, and Global Systems Science have been identified as natural partners.
- 2012 CPES Annual ReportCenter for Power Electronics Systems (Virginia Tech. Center for Power Electronics Systems, 2012)The Center for Power Electronics Systems at Virginia Tech is a research center dedicated to improving electrical power processing and distribution that impact systems of all sizes – from battery – operated electronics to vehicles to regional and national electrical distribution systems. Our mission is to provide leadership through global collaborative research and education for creating advanced electric power processing systems of the highest value to society. CPES, with annual research expenditures about $4-5 million US dollars, has a worldwide reputation for its research advances, its work with industry, and its many talented graduates. From its background as an Engineering Research Center for the National Science Foundation during 1998 - 2008, CPES has continued to work towards making electric power processing more efficient and more exact in order to reduce energy consumption. Power electronics is the “enabling infrastructure technology” that promotes the conversion of electrical power from its raw form to the form needed by machines, motors and electronic equipment. Advances in power electronics can reduce power conversion loss and in turn increase energy efficiency of equipment and processes using electrical power. This results in increased industrial productivity and product quality. With widespread use of power electronics technology, the United States would be able to cut electrical energy consumption by 33 percent. This energy savings in the United States alone is estimated to be the equivalent of output from 840 fossil fuel based generating plants. This savings would result in enormous economic, environmental and social benefits.
- 2013 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2013)The CPES industrial consortium is designed to cultivate connectivity among researchers in academia and industry, as well as create synergy within the network of industry members. The CPES industrial consortium offers: The best mechanism to stay abreast of technological developments in power electronics; The ideal forum for networking with leadingedge companies and top-notch researchers; The CPES connection provides the competitive edge to industry members via: Access to state-of-the-art facilities, faculty expertise, top-notch students; Leveraged research funding of over $4-10 million per year; Industry influence via Industry Advisory Board and research champions; Intellectual properties with early access for Principal Plus and Principal members via CPES IPPF (Intellectual Property Protection Fund); Technology transfer made possible via special access to the Center’s multi-disciplinary team of researchers, and resulting publications, presentations and intellectual properties; Continuing education opportunities via professional short courses offered at a significant discount. The CPES industrial consortium offers the ideal forum for networking with leading-edge companies and top-notch researchers and provides the best mechanism to stay abreast of technological developments in power electronics.
- 2014 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2014)Over the past two decades, CPES has secured research funding from major industries, such as GE, Rolls-Royce, Boeing, Alstom, ABB, Toyota, Nissan, Raytheon, and MKS, as well as from government agencies including the NSF, DOE, DARPA, ONR, U.S. Army, and the U.S. Air Force, in research pursuing high-density system design. CPES has developed unique high-temperature packaging technology critical to the future powerelectronic industry. In the HDI mini-consortium, the goal of high power density will be pursued following two coupled paths, both leveraging the availability of wide-bandgap power semiconductor, as well as high-temperature passive components and ancillary functions. The switching frequency will be pushed as high as component technologies, thermal management, and reliability permit. At the same time, the maximum component temperatures will be pushed as high as component technologies, thermal management, and reliability permit. The emergence of wide‐bandgap semiconductors such as Silicon Carbide (SiC) and Gallium Nitride (GaN) makes it possible to realize power switches that operate at frequency beyond 5 MHz and temperature beyond 200° C. As the switching frequency increases, switching noise is shifted to higher frequency and can be filtered with small passive components, leading to improved power density. Higher operating temperatures enable increased power density and applications under harsh environments, such as military systems, transportation systems, and outdoor industrial and utility systems.
- 2015 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2015)In its efforts to develop power processing systems to take electricity to the next step, CPES has developed research expertise encompassing five technology areas: (1) power conversion technologies and architectures; (2) power electronics components; (3) modeling and control; (4) EMI and power quality; (5) high density integration. These technology areas target applications that include: (1) Power management for information and communications technology; (2) Point-of-load conversion for power supplies; (3) Vehicular power conversion systems; (4) Renewable energy systems. In 2015, CPES sponsored research totaled approximately $2.2 million. The following abstracts provide a quick insight to the current research efforts.
- 2016 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2016)In its effort to develop power processing systems to take electricity to the next step, CPES has cultivated research expertise encompassing five technology areas: (1) power conversion technologies and architectures; (2) power electronics components; (3) modeling and control; (4) EMI and power quality; and (5) high density integration. These technology areas target applications that include: (1) Power management for information and communications technology; (2) Point-of-load conversion for power supplies; (3) Vehicular power converter systems; and (4) High-power conversion systems. In 2016, CPES sponsored research totaled approximately $2.1 million. The following abstracts provide a quick insight to the current research efforts.
- 2017 CPES Annual ReportCenter for Power Electronics Systems; Uncork-it, Inc. (Virginia Tech. Center for Power Electronics Systems, 2017)In its effort to develop power processing systems to take electricity to the next step, CPES has cultivated research expertise encompassing five technology areas: (1) power conversion technologies and architectures; (2) power electronics components; (3) modeling and control; (4) EMI and power quality; and (5) high density integration. These technology areas target applications that include: (1) power management for information and communications technology; (2) point-of-load conversion for power supplies; (3) vehicular power converter systems; and (4) high-power conversion systems. In 2016, CPES sponsored research totaled approximately $2.4 million. The following abstracts provide a quick insight to the current research efforts.
- 2018 CPES Annual Report(Virginia Tech, 2018)In its effort to develop power processing systems to take electricity to the next step, CPES has cultivated research expertise encompassing five technology areas: (1) power conversion technologies and architectures; (2) power electronics components; (3) modeling and control; (4) EMI and power quality; and (5) high density integration. These technology areas target applications that include: (1) power management for information and communications technology; (2) point-of-load conversion for power supplies; (3) vehicular power converter systems; and (4) high-power conversion systems. In 2018, CPES sponsored research totaled approximately $2.9 million. The following abstracts provide a quick insight to the current research efforts.
- 2018 Integrated Pest Management Innovation Lab Semi-Annual Report (October 1 2017 - March 31 2018)(Virginia Tech, 2018-03-31)Published every year, our reports detail work, accomplishments, training, and publications from each of our programs.
- 2020 Feed the Future Innovation Lab for Integrated Pest Management Semi-Annual Report(Virginia Tech, 2020)Published every year, our reports detail work, accomplishments, training, and publications from each of our programs.
- 2021 GAP Report Launch: Strengthening the Climate For Sustainable Agricultural GrowthSteensland, Ann (Virginia Tech College of Agriculture and Life Sciences, 2021-10-20)During the launch of the 2021 Global Agricultural Productivity Report (GAP Report), the newest data on agricultural productivity across the globe was revealed to be well below the Global Agricultural Productivity Index target. Through a solution-oriented discussion, experts across the globe discuss what we can do now to address the looming crisis.
- 2nd Annual Advancing the Human Condition Symposium(Virginia Tech, 2018-11-27)The Office for Inclusion and Diversity presents the second annual Advancing the Human Condition Symposium, Nov. 27-28, 2018 at the Inn at Virginia Tech and Skelton Conference Center. The two-day event fosters intellectual discourse around emerging questions of the human condition from multi-disciplinary and interdisciplinary perspectives, and adopts a dialogue format that features key discussants and respondents in conversation with other researchers, practitioners, and scholar activists.
- A 3-D Finite-Element Minipig Model to Assess Brain Biomechanical Responses to Blast ExposureSundaramurthy, Aravind; Kote, Vivek Bhaskar; Pearson, Noah; Boiczyk, Gregory M.; McNeil, Elizabeth M.; Nelson, Allison J.; Subramaniam, Dhananjay Radhakrishnan; Rubio, Jose E.; Monson, Kenneth; Hardy, Warren N.; VandeVord, Pamela J.; Unnikrishnan, Ginu; Reifman, Jaques (Frontiers, 2021-12-17)Despite years of research, it is still unknown whether the interaction of explosion-induced blast waves with the head causes injury to the human brain. One way to fill this gap is to use animal models to establish “scaling laws” that project observed brain injuries in animals to humans. This requires laboratory experiments and high-fidelity mathematical models of the animal head to establish correlates between experimentally observed blast-induced brain injuries and model-predicted biomechanical responses. To this end, we performed laboratory experiments on Göttingen minipigs to develop and validate a three-dimensional (3-D) high-fidelity finite-element (FE) model of the minipig head. First, we performed laboratory experiments on Göttingen minipigs to obtain the geometry of the cerebral vasculature network and to characterize brain-tissue and vasculature material properties in response to high strain rates typical of blast exposures. Next, we used the detailed cerebral vasculature information and species-specific brain tissue and vasculature material properties to develop the 3-D high-fidelity FE model of the minipig head. Then, to validate the model predictions, we performed laboratory shock-tube experiments, where we exposed Göttingen minipigs to a blast overpressure of 210 kPa in a laboratory shock tube and compared brain pressures at two locations. We observed a good agreement between the model-predicted pressures and the experimental measurements, with differences in maximum pressure of less than 6%. Finally, to evaluate the influence of the cerebral vascular network on the biomechanical predictions, we performed simulations where we compared results of FE models with and without the vasculature. As expected, incorporation of the vasculature decreased brain strain but did not affect the predictions of brain pressure. However, we observed that inclusion of the cerebral vasculature in the model changed the strain distribution by as much as 100% in regions near the interface between the vasculature and the brain tissue, suggesting that the vasculature does not merely decrease the strain but causes drastic redistributions. This work will help establish correlates between observed brain injuries and predicted biomechanical responses in minipigs and facilitate the creation of scaling laws to infer potential injuries in the human brain due to exposure to blast waves.
- 32nd Graduate Student Assembly (GSA) Research Symposium: Beyond Boundaries, Across Disciplines(Virginia Tech, 2016-03-23)The Graduate Student Assembly (GSA) Research Symposium & Exposition is a unique opportunity for graduate and advanced undergraduate students to bring together ideas and research findings from different disciplines by showcasing their scholarly pursuits and achievements in a variety of formats, including posters, papers, panels, roundtable discussions, and creative installations. This year’s theme is Beyond Boundaries, Across Disciplines. This reflects the goal of the GSA Research Symposium & Exposition Organization Committee to highlight intersectionality across multiple disciplines, and our commitment to showcasing research from a wide variety of departments, programs, and colleges during the Symposium.
- 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function RestorationKim, Ji Hyun; Seol, Young-Joon; Ko, In Kap; Kang, Hyun-Wook; Lee, Young Koo; Yoo, James J.; Atala, Anthony; Lee, Sang Jin (Springer Nature, 2018-08-17)A bioengineered skeletal muscle tissue as an alternative for autologous tissue flaps, which mimics the structural and functional characteristics of the native tissue, is needed for reconstructive surgery. Rapid progress in the cell-based tissue engineering principle has enabled in vitro creation of cellularized muscle-like constructs; however, the current fabrication methods are still limited to build a three-dimensional (3D) muscle construct with a highly viable, organized cellular structure with the potential for a future human trial. Here, we applied 3D bioprinting strategy to fabricate an implantable, bioengineered skeletal muscle tissue composed of human primary muscle progenitor cells (hMPCs). The bioprinted skeletal muscle tissue showed a highly organized multi-layered muscle bundle made by viable, densely packed, and aligned myofiber-like structures. Our in vivo study presented that the bioprinted muscle constructs reached 82% of functional recovery in a rodent model of tibialis anterior (TA) muscle defect at 8 weeks of post-implantation. In addition, histological and immunohistological examinations indicated that the bioprinted muscle constructs were well integrated with host vascular and neural networks. We demonstrated the potential of the use of the 3D bioprinted skeletal muscle with a spatially organized structure that can reconstruct the extensive muscle defects.
- 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehiclesMaurya, Deepam; Khaleghian, Seyedmeysam; Sriramdas, Rammohan; Kumar, Prashant; Kishore, Ravi Anant; Kang, Min-Gyu; Kumar, Vireshwar; Song, Hyun-Cheol; Lee, Seul-Yi; Yan, Yongke; Park, Jung-Min (Jerry); Taheri, Saied; Priya, Shashank (2020-10-26)The transition of autonomous vehicles into fleets requires an advanced control system design that relies on continuous feedback from the tires. Smart tires enable continuous monitoring of dynamic parameters by combining strain sensing with traditional tire functions. Here, we provide breakthrough in this direction by demonstrating tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis. Ink of graphene based material was designed to directly print strain sensor for measuring tire-road interactions under varying driving speeds, normal load, and tire pressure. A secure wireless data transfer hardware powered by a piezoelectric patch is implemented to demonstrate self-powered sensing and wireless communication capability. Combined, this study significantly advances the design and fabrication of cost-effective smart tires by demonstrating practical self-powered wireless strain sensing capability. Designing efficient sensors for smart tires for autonomous vehicles remains a challenge. Here, the authors present a tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis.
- 3D printing of lignin: Challenges, opportunities and roads onwardEbers, L. -S.; Arya, Aditi; Bowland, C. C.; Glasser, Wolfgang G.; Chmely, S. C.; Naskar, A. K.; Laborie, Marie-Pierre Genevieve (2021-06)As the second most abundant biopolymer on earth, and as a resource recently becoming more available in separated and purified form on an industrial scale due to the development of new isolation technologies, lignin has a key role to play in transitioning our material industry towards sustainability. Additive manufacturing (AM), the most efficient-material processing technology to date, has likewise made great strides to promote sustainable industrial solutions to our needs in engineered products. Bringing lignin research to AM has prompted the emergence of the nascent "lignin 3D printing" field. This review presents the recent state of art of this promising field and highlights its challenges and opportunities. Following a review of the industrial availability, molecular attributes, and associated properties of technical lignins, we review R&D efforts at implementing lignin systems in extrusion-based and stereolithography (SLA) printing technologies. Doing so underlines the adage of lignin research that "all lignins are not created equal," and stresses the opportunity nested in this chemical diversity created mostly by differences in isolation conditions to molecularly select and tune the attributes of technical lignin systems towards desirable properties, be it by modification or polymer blending. Considering the AM design process in its entirety, we finally propose onward routes to bring the full potential to this emerging field. We hope that this review can help promote the unique value and overdue industrial role of lignin in sustainable engineered materials and products.
- 3D Sketching and Flexible Input for Surface Design: A Case StudyLeal, Anamary; Bowman, Douglas A. (Brazilian Computing Society (SBC), 2014)Designing three-dimensional (3D) surfaces is difficult in both the physical world and in 3D modeling software, requiring background knowledge and skill. The goal of this work is to make 3D surface design easier and more accessible through natural and tangible 3D interaction, taking advantage of users' proprioceptive senses to help them understand 3D position, orientation, size, and shape. We hypothesize that flexible input based on fabric may be suitable for 3D surface design, because it can be molded and folded into a desired shape, and because it can be used as a dynamic flexible brush for 3D sketching. Fabric3D, an interactive surface design system based on 3D sketching with flexible input, explored this hypothesis. Through a longitudinal five-part study in which three domain experts used Fabric3D, we gained insight into the use of flexible input and 3D sketching for surface design in various domains.
- 3D Time-Based Aural Data Representation Using D⁴ Library’s Layer Based Amplitude Panning AlgorithmBukvic, Ivica Ico (Georgia Institute of Technology, 2016-07)The following paper introduces a new Layer Based Amplitude Panning algorithm and supporting D⁴ library of rapid prototyping tools for the 3D time-based data representation using sound. The algorithm is designed to scale and support a broad array of configurations, with particular focus on High Density Loudspeaker Arrays (HDLAs). The supporting rapid prototyping tools are designed to leverage oculocentric strategies to importing, editing, and rendering data, offering an array of innovative approaches to spatial data editing and representation through the use of sound in HDLA scenarios. The ensuing D⁴ ecosystem aims to address the shortcomings of existing approaches to spatial aural representation of data, offers unique opportunities for furthering research in the spatial data audification and sonification, as well as transportable and scalable spatial media creation and production.
- A 4-year longitudinal neuroimaging study of cognitive control using latent growth modeling: developmental changes and brain-behavior associationsKim-Spoon, Jungmeen; Herd, Toria; Brieant, Alexis; Elder, Jacob; Lee, Jacob; Deater-Deckard, Kirby; Casas, Brooks (2021-08-15)Despite theoretical models suggesting developmental changes in neural substrates of cognitive control in adolescence, empirical research has rarely examined intraindividual changes in cognitive control-related brain activation using multi-wave multivariate longitudinal data. We used longitudinal repeated measures of brain activation and behavioral performance during the multi-source interference task (MSIT) from 167 adolescents (53% male) who were assessed annually over four years from ages 13 to 17 years. We applied latent growth modeling to delineate the pattern of brain activation changes over time and to examine longitudinal associations between brain activation and behavioral performance. We identified brain regions that showed differential change patterns: (1) the fronto-parietal regions that involved bilateral insula, bilateral middle frontal gyrus, left pre-supplementary motor area, left inferior parietal lobule, and right precuneus; and (2) the rostral anterior cingulate cortex (rACC) region. Longitudinal confirmatory factor analyses of the fronto-parietal regions revealed strong measurement invariance across time implying that multivariate functional magnetic resonance imaging data during cognitive control can be measured reliably over time. Latent basis growth models indicated that fronto-parietal activation decreased over time, whereas rACC activation increased over time. In addition, behavioral performance data, age-related improvement was indicated by a decreasing trajectory of intraindividual variability in response time across four years. Testing longitudinal brain-behavior associations using multivariate growth models revealed that better behavioral cognitive control was associated with lower fronto-parietal activation, but the change in behavioral performance was not related to the change in brain activation. The current findings suggest that reduced effects of cognitive interference indicated by fronto-parietal recruitment may be a marker of a maturing brain that underlies better cognitive control performance during adolescence.