Virginia-Maryland College of Veterinary Medicine (VMCVM)
Permanent URI for this community
The Virginia-Maryland College of Veterinary Medicine is a two-state, three-campus professional school operated by the land-grant universities of Virginia Tech in Blacksburg and the University of Maryland at College Park. In addition to the main campus installation at Virginia Tech, the College also operates the Avrum Gudelsky Veterinary Center at College Park, and the Marion duPont Scott Equine Medical Center in Leesburg.
Browse
Browsing Virginia-Maryland College of Veterinary Medicine (VMCVM) by Department "Biological Sciences"
Now showing 1 - 18 of 18
Results Per Page
Sort Options
- Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injuryHazy, Amanda; Bochicchio, Lauren; Oliver, Andrea; Xie, Eric; Geng, Shuo; Brickler, Thomas; Xie, Hehuang David; Li, Liwu; Allen, Irving C.; Theus, Michelle H. (Springer Nature, 2019-06-12)The peripheral immune system is a major regulator of the pathophysiology associated with traumatic brain injury (TBI). While age-at-injury influences recovery from TBI, the differential effects on the peripheral immune response remain unknown. Here, we investigated the effects of TBI on gene expression changes in murine whole blood using RNAseq analysis, gene ontology and network topology-based key driver analysis. Genome-wide comparison of CCI-injured peripheral whole blood showed a significant increase in genes involved in proteolysis and oxidative-reduction processes in juvenile compared to adult. Conversely, a greater number of genes, involved in migration, cytokine-mediated signaling and adhesion, were found reduced in CCI-injured juvenile compared to CCI-injured adult immune cells. Key driver analysis also identified G-protein coupled and novel pattern recognition receptor (PRR), P2RY10, as a central regulator of these genes. Lastly, we found Dectin-1, a c-type lectin PRR to be reduced at the protein level in both naive neutrophils and on infiltrating immune cells in the CCI-injured juvenile cortex. These findings demonstrate a distinct peripheral inflammatory profile in juvenile mice, which may impact the injury and repair response to brain trauma.
- Effect of Salmonella enterica serovar Typhimurium VNP20009 and VNP20009 with restored chemotaxis on 4T1 mouse mammary carcinoma progressionCoutermarsh-Ott, Sheryl; Broadway, Katherine M.; Scharf, Birgit E.; Allen, Irving C. (Impact Journals, 2017-05-16)A variety of bacterial strains have been evaluated as bio-therapeutic and immunomodulatory agents to treat cancer. One such strain, Salmonella enterica serovar Typhimurium VNP20009, which is attenuated by a purine auxotrophic mutation and modified lipid A, is characterized in previous models as a safely administered, tumor colonizing agent. However, earlier work tended to use less aggressive cancer cell lines and immunocompromised animal models. Here, we investigated the safety and efficacy of VNP20009 in a highly malignant murine model of human breast cancer. Additionally, as VNP20009 has recently been found to have a defective chemotaxis system, we tested whether restoring chemotaxis would improve anti-cancer properties in this model system. Exposure to VNP20009 had no significant effect on primary mammary tumor size or pulmonary metastasis, and the tumor colonizing process appeared chemotaxis independent. Moreover, tumor-bearing mice exposed to Salmonella exhibited increased morbidity that was associated with significant liver disease. Our results suggest that VNP20009 may not be safe or efficacious when used in aggressive, metastatic breast cancer models utilizing immunocompetent animals.
- EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activitySun, Zhixiong; Xu, Xiguang; He, Jianlin; Murray, Alexander; Sun, Ming-an; Wei, Xiaoran; Wang, Xia; McCoig, Emmarose; Xie, Evan; Jiang, Xi; Li, Liwu; Zhu, Jinsong; Chen, Jianjun; Morozov, Alexei; Pickrell, Alicia M.; Theus, Michelle H.; Xie, Hehuang David (2019-08-29)Life experience can leave lasting marks, such as epigenetic changes, in the brain. How life experience is translated into storable epigenetic information remains largely unknown. With unbiased data-driven approaches, we predicted that Egr1, a transcription factor important for memory formation, plays an essential role in brain epigenetic programming. We performed EGR1 ChIP-seq and validated thousands of EGR1 binding sites with methylation patterns established during postnatal brain development. More specifically, these EGR1 binding sites become hypomethylated in mature neurons but remain heavily methylated in glia. We further demonstrated that EGR1 recruits a DNA demethylase TET1 to remove the methylation marks and activate downstream genes. The frontal cortices from the knockout mice lacking Egr1 or Tet1 share strikingly similar profiles in both gene expression and DNA methylation. In summary, our study reveals EGR1 programs the brain methylome together with TET1 providing new insight into how life experience may shape the brain methylome.
- EGR2 is elevated and positively regulates inflammatory IFNγ production in lupus CD4+ T cellsDai, Rujuan; Heid, Bettina; Xu, Xiguang; Xie, Hehuang David; Reilly, Christopher M.; Ahmed, Sattar Ansar (2020-07-09)Background Recent studies have shown that early growth response 2 (EGR2) is highly induced in activated T cells and regulates T cell functions. In normal C57BL/6 (B6) mice, deletion of EGR2 in lymphocytes results in the development of lupus-like systemic autoimmune disease, which implies indirectly an autoimmune protective role of EGR2. Conversely, increased EGR2 gene expression is suggested to link with high risk of human lupus. In the present studies we sought to clarify the expression and inflammation regulatory role of EGR2 in murine lupus T cells directly. Results We performed RT-qPCR analysis and found a significant increase of EGR2 mRNA expression in human lupus PBMCs and in CD4+ T cells from three different murine lupus models including MRL-lpr, B6-lpr, and B6.sle123 mice at diseased stage when compared to age-matched control MRL or B6 mice. By performing intracellular flow cytometry analysis, we found that EGR2 protein expression was significantly increased in resting lupus (either MRL-lpr or B6.sle123) CD4+ T cells when compared to CD4+ T cells from their respective non-autoimmune controls. However, there was no difference of EGR2 protein expression in anti-CD3 and anti-CD28 stimulated control and lupus CD4+ T cells since there was a stronger induction of EGR2 in activated control CD4+ T cells. EGR2 expression was significantly increased in MRL-lpr mice at an age when lupus is manifested. To understand further the function of elevated EGR2 in lupus CD4+ T cells, we inhibited EGR2 with a specific siRNA in vitro in splenocytes from MRL-lpr and control MRL mice at 15 weeks-of-age. We found that EGR2 inhibition significantly reduced IFNγ production in PMA and ionomycin activated MRL-lpr lupus CD4+ T cells, but not control MRL CD4+ T cells. We also found that inhibition of EGR2 in vitro suppressed the Th1 differentiation in both MRL and MRL-lpr naïve CD4+ T cells. Conclusions EGR2 is highly upregulated in human and murine lupus cells. Our in vitro data suggest a positive role of EGR2 in the regulation of Th1 differentiation and IFNγ production in lupus effector CD4+ T cells.
- Enhanced Mucosal Defense and Reduced Tumor Burden in Mice with the Compromised Negative Regulator IRAK-MRothschild, Daniel E.; Zhang, Yao; Diao, Na; Lee, Christina K.; Chen, Keqiang; Caswell, Clayton C.; Slade, Daniel J.; Helm, Richard F.; LeRoith, Tanya; Li, Liwu; Allen, Irving C. (2016-12-03)Aberrant inflammation is a hallmark of inflammatory bowel disease (IBD) and colorectal cancer. IRAK-M is a critical negative regulator of TLR signaling and overzealous inflammation. Here we utilize data from human studies and Irak-m(-/-) mice to elucidate the role of IRAK-M in the modulation of gastrointestinal immune system homeostasis. In human patients, IRAK-M expression is up-regulated during IBD and colorectal cancer. Further functional studies in mice revealed that Irak-m(-/-) animals are protected against colitis and colitis associated tumorigenesis. Mechanistically, our data revealed that the gastrointestinal immune system of Irak-m(-/-) mice is highly efficient at eliminating microbial translocation following epithelial barrier damage. This attenuation of pathogenesis is associated with expanded areas of gastrointestinal associated lymphoid tissue (GALT), increased neutrophil migration, and enhanced T-cell recruitment. Further evaluation of Irak-m(-/-) mice revealed a splice variant that robustly activates NF-κB signaling. Together, these data identify IRAK-M as a potential target for future therapeutic intervention.
- Identifying Transcriptional Regulatory Modules Among Different Chromatin States in Mouse Neural Stem CellsBanerjee, Sharmi; Zhu, Hongxiao; Tang, Man; Feng, Wu-chun; Wu, Xiaowei; Xie, Hehuang David (Frontiers, 2019-01-15)Gene expression regulation is a complex process involving the interplay between transcription factors and chromatin states. Significant progress has been made toward understanding the impact of chromatin states on gene expression. Nevertheless, the mechanism of transcription factors binding combinatorially in different chromatin states to enable selective regulation of gene expression remains an interesting research area. We introduce a nonparametric Bayesian clustering method for inhomogeneous Poisson processes to detect heterogeneous binding patterns of multiple proteins including transcription factors to form regulatory modules in different chromatin states. We applied this approach on ChIP-seq data for mouse neural stem cells containing 21 proteins and observed different groups or modules of proteins clustered within different chromatin states. These chromatin-state-specific regulatory modules were found to have significant influence on gene expression. We also observed different motif preferences for certain TFs between different chromatin states. Our results reveal a degree of interdependency between chromatin states and combinatorial binding of proteins in the complex transcriptional regulatory process. The software package is available on Github at - https://github.com/BSharmi/DPM-LGCP.
- The Impact of Protein Acetylation/Deacetylation on Systemic Lupus ErythematosusRen, Jingjing; Panther, Eric J.; Liao, Xiaofeng; Grammer, Amrie C.; Lipsky, Peter E.; Reilly, Christopher M. (MDPI, 2018-12-12)Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease in which the body’s immune system mistakenly attacks healthy cells. Although the exact cause of SLE has not been identified, it is clear that both genetics and environmental factors trigger the disease. Identical twins have a 24% chance of getting lupus disease if the other one is affected. Internal factors such as female gender and sex hormones, the major histocompatibility complex (MHC) locus and other genetic polymorphisms have been shown to affect SLE, as well as external, environmental influences such as sunlight exposure, smoking, vitamin D deficiency, and certain infections. Several studies have reported and proposed multiple associations between the alteration of the epigenome and the pathogenesis of autoimmune disease. Epigenetic factors contributing to SLE include microRNAs, DNA methylation status, and the acetylation/deacetylation of histone proteins. Additionally, the acetylation of non-histone proteins can also influence cellular function. A better understanding of non-genomic factors that regulate SLE will provide insight into the mechanisms that initiate and facilitate disease and also contribute to the development of novel therapeutics that can specifically target pathogenic molecular pathways.
- Inhibition of toxoplasma gondii and plasmodium falciparum infections in vitro by nsc3852, a redox active anti proliferative and tumor cell differentiation agentStrobl, J. S.; Seibert, C. W.; Li, Y. B.; Nagarkatti, R.; Mitchell, S. M.; Rosypal, A. C.; Rathore, D.; Lindsay, David S. (American Society of Parasitology, 2009-02)We searched the National Cancer Institute (NCI) compound library for structures related to the antitumor quinoline NSC3852 (5-nitroso-8-quinolinol) and used a computer algorithm to predict the antiprotozoan activity for each of 13 structures. Half of these compounds inhibited Toroplastna gondii tachyzoite propagation in human fibroblasts at <= 1 mu M. The active compounds comprise a series of low-molecular-weight quinolines bearing nitrogen substituents in the ring-5 position. NSC3852 (EC(50) 80 nM) and NSC74949 (EC(50) 646 nM) were the most potent. NSC3852 also inhibited Plasmodium falciparum growth in human red blood cells (EC(50) 1.3 mu M). To investigate the mechanism for NSC3852's anti-T. gondii activity, we used chemiluminescence assays to detect reactive oxygen species (ROS) formation in freshly isolated tachyzoites and in infected host cells; the absence of ROS generation by NSC3852 in these assays indicated NSC3852 does not redox cycle in T. gondii. Inhibitors of enzyme sources of free radicals such as superoxide anion, nitric oxide (NO), and their reaction product peroxynitrite did not interfere with the anti-T. gondii activity of NSC3852. However, inhibition of T. gondii tachyzoite propagation by NSC3852 involved redox reactions because tachyzoites were protected from NSC3852 by inclusion of the cell permeant superoxide dismutase mimetic, MnTMPyP or N-acetylcysteine in the culture medium. We conclude that the Prediction of Activity Spectra for Substances (PASS) computer program is useful in finding new compounds that inhibit T. gondii tachyzoites in vitro and that NSC3852 is a potent T. gondii inhibitor that: acts by indirect generation of oxidative stress in T. gondii.
- Metagonimoides oregonensis (heterophyidae: digenea) infection in pleurocerid snails and desmognathus quadramaculatus salamander larvae in southern Appalachian streamsBelden, Lisa K.; Peterman, William E.; Smith, Stephen A.; Brooks, Lauren R.; Benfield, Ernest F.; Black, Wesley P.; Yang, Zhaomin; Wojdak, Jeremy M. (American Society of Parasitology, 2012-08)Metagonimoides oregonensis (Heterophyidae) is a little-known digenetic trematode that uses raccoons and possibly mink as definitive hosts, and stream snails and amphibians as intermediate hosts. Some variation in the life cycle and adult morphology in western and eastern populations has been previously noted. In the southern Appalachians, Pleurocera snails and stream salamanders, e.g., Desmognathus spp., are used as intermediate hosts in the life cycle. We completed a series of studies in this system examining some aspects of larval trematode morphology and first and second intermediate host use. Molecular sequencing of the 28S rDNA of cercariae in our survey placed them clearly within the heterophyid family. However, light and scanning electron microscopy revealed both lateral and dorso-ventral finfolds on the cercariae in our region, whereas original descriptions of M. oregonensis cercariae from the west coast indicate only a dorso-ventral finfold, so further work on the systematics of this group may be warranted. A survey of first intermediate host, Pleurocera proxima, from 7 streams in the region identified only M. oregonensis, virgulate-type cercariae, and cotylomicrocercous-type cercariae in the streams, with M. oregonensis having the highest prevalence, and the only type present that use amphibians as second intermediate hosts. Based on clearing and staining of 6 Desmognathus quadramaculatus salamander larvae, we found that individual salamanders could have over 600 metacercariae, which form between muscle fibers throughout the body. Histological observations suggest that the metacercariae do not cause excessive tissue damage or inflammation, and likely persist through metamorphosis, thereby transmitting potentially large numbers of worms to definitive host raccoons foraging along streams.
- Molecular targets for rapid identification of BrucellasppRatushna, Vladyslava G.; Sturgill, David M.; Ramamoorthy, Sheela; Reichow, Sherry A.; He, Yongqun; Lathigra, Raju; Sriranganathan, Nammalwar; Halling, Shirley M.; Boyle, Stephen M.; Gibas, Cynthia J. (2006-02-22)Background Brucella is an intracellular pathogen capable of infecting animals and humans. There are six recognized species of Brucella that differ in their host preference. The genomes of the three Brucella species have been recently sequenced. Comparison of the three revealed over 98% sequence similarity at the protein level and enabled computational identification of common and differentiating genes. We validated these computational predictions and examined the expression patterns of the putative unique and differentiating genes, using genomic and reverse transcription PCR. We then screened a set of differentiating genes against classical Brucella biovars and showed the applicability of these regions in the design of diagnostic tests. Results We have identified and tested set of molecular targets that are associated in unique patterns with each of the sequenced Brucella spp. A comprehensive comparison was made among the published genome sequences of B. abortus, B. melitensis and B. suis. The comparison confirmed published differences between the three Brucella genomes, and identified subsets of features that were predicted to be of interest in a functional comparison of B. melitensis and B. suis to B. abortus. Differentiating sequence regions from B. abortus, B. melitensis and B. suis were used to develop PCR primers to test for the existence and in vitro transcription of these genes in these species. Only B. suis is found to have a significant number of unique genes, but combinations of genes and regions that exist in only two out of three genomes and are therefore useful for diagnostics were identified and confirmed. Conclusion Although not all of the differentiating genes identified were transcribed under steady state conditions, a group of genes sufficient to discriminate unambiguously between B. suis, B. melitensis, and B. abortus was identified. We present an overview of these genomic differences and the use of these features to discriminate among a number of Brucella biovars.
- Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic NeuronsYanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S. (MDPI, 2017-02-07)Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.
- NLRX1 suppresses tumorigenesis and attenuates histiocytic sarcoma through the negative regulation of NF-lambda B signalingCoutermarsh-Ott, Sheryl; Simmons, Alysha; Capria, Vittoria; LeRoith, Tanya; Wilson, Justin E.; Heid, Bettina; Philipson, Casandra W.; Qin, Q.; Hontecillas, Raquel; Bassaganya-Riera, Josep; Ting, Jenny P.-Y.; Dervisis, Nikolaos G.; Allen, Irving C. (Impact Journals, 2016-05-31)
- Pathogenesis and shedding of Usutu virus in juvenile chickensKuchinsky, Sarah C.; Frere, Francesca; Heitzman-Breen, Nora; Golden, Jacob; Vázquez, Ana; Honaker, Christa F.; Siegel, Paul B.; Ciupe, Stanca M.; LeRoith, Tanya; Duggal, Nisha K. (Taylor & Francis, 2021-01-01)Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.
- The Pro-Inflammatory Chemokines CXCL9, CXCL10 and CXCL11 Are Upregulated Following SARS-CoV-2 Infection in an AKT-Dependent MannerCallahan, Victoria; Hawks, Seth A.; Crawford, Matthew A.; Lehman, Caitlin W.; Morrison, Holly A.; Ivester, Hannah M.; Akhrymuk, Ivan V.; Boghdeh, Niloufar; Flor, Rafaela; Finkielstein, Carla V.; Allen, Irving C.; Weger-Lucarelli, James; Duggal, Nisha K.; Hughes, Molly A.; Kehn-Hall, Kylene (MDPI, 2021-06-03)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Patients with severe COVID-19 may develop acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) and require mechanical ventilation. Key features of SARS-CoV-2 induced pulmonary complications include an overexpression of pro-inflammatory chemokines and cytokines that contribute to a ‘cytokine storm.’ In the current study an inflammatory state in Calu-3 human lung epithelial cells was characterized in which significantly elevated transcripts of the immunostimulatory chemokines CXCL9, CXCL10, and CXCL11 were present. Additionally, an increase in gene expression of the cytokines IL-6, TNFα, and IFN-γ was observed. The transcription of CXCL9, CXCL10, IL-6, and IFN-γ was also induced in the lungs of human transgenic angiotensin converting enzyme 2 (ACE2) mice infected with SARS-CoV-2. To elucidate cell signaling pathways responsible for chemokine upregulation in SARS-CoV-2 infected cells, small molecule inhibitors targeting key signaling kinases were used. The induction of CXCL9, CXCL10, and CXCL11 gene expression in response to SARS-CoV-2 infection was markedly reduced by treatment with the AKT inhibitor GSK690693. Samples from COVID-19 positive individuals also displayed marked increases in CXCL9, CXCL10, and CXCL11 transcripts as well as transcripts in the AKT pathway. The current study elucidates potential pathway specific targets for reducing the induction of chemokines that may be contributing to SARS-CoV-2 pathogenesis via hyperinflammation.
- Quaternary Ammonium Compound Disinfectants Reduce Lupus-Associated Splenomegaly by Targeting Neutrophil Migration and T-Cell FateAbdelhamid, Leila; Cabana-Puig, Xavier; Mu, Qinghui; Moarefian, Maryam; Swartwout, Brianna K.; Eden, Kristin; Das, Prerna; Seguin, Ryan P.; Xu, Libin; Lowen, Sarah; Lavani, Mital; Hrubec, Terry C.; Jones, Caroline N.; Luo, Xin M. (2020-10-21)Hypersensitivity reactions and immune dysregulation have been reported with the use of quaternary ammonium compound disinfectants (QACs). We hypothesized that QAC exposure would exacerbate autoimmunity associated with systemic lupus erythematosus (lupus). Surprisingly, however, we found that compared to QAC-free mice, ambient exposure of lupus-prone mice to QACs led to smaller spleens with no change in circulating autoantibodies or the severity of glomerulonephritis. This suggests that QACs may have immunosuppressive effects on lupus. Using a microfluidic device, we showed that ambient exposure to QACs reduced directional migration of bone marrow-derived neutrophils toward an inflammatory chemoattractant ex vivo. Consistent with this, we found decreased infiltration of neutrophils into the spleen. While bone marrow-derived neutrophils appeared to exhibit a pro-inflammatory profile, upregulated expression of PD-L1 was observed on neutrophils that infiltrated the spleen, which in turn interacted with PD-1 on T cells and modulated their fate. Specifically, QAC exposure hindered activation of splenic T cells and increased apoptosis of effector T-cell populations. Collectively, these results suggest that ambient QAC exposure decreases lupus-associated splenomegaly likely through neutrophil-mediated toning of T-cell activation and/or apoptosis. However, our findings also indicate that even ambient exposure could alter immune cell phenotypes, functions, and their fate. Further investigations on how QACs affect immunity under steady-state conditions are warranted.
- A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applicationsGuo, Sujuan; Liang, Yanping; Murphy, Susan F.; Huang, Angela; Shen, Haihong; Kelly, Deborah F.; Sobrado, Pablo; Sheng, Zhi (Taylor & Francis, 2015-03-01)The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.
- Retinal-input-induced epigenetic dynamics in the developing mouse dorsal lateral geniculate nucleusHe, Jianlin; Xu, Xiguang; Monavarfeshani, Aboozar; Banerjee, Sharmi; Fox, Michael A.; Xie, Hehuang David (2019-02-14)DNA methylation plays important roles in the regulation of nervous system development and in cellular responses to environmental stimuli such as light-derived signals. Despite great efforts in understanding the maturation and refinement of visual circuits, we lack a clear understanding of how changes in DNA methylation correlate with visual activity in the developing subcortical visual system, such as in the dorsal lateral geniculate nucleus (dLGN), the main retino-recipient region in the dorsal thalamus. Here, we explored epigenetic dynamics underlying dLGN development at ages before and after eye opening in wild-type mice and mutant mice in which retinal ganglion cells fail to form. We observed that development-related epigenetic changes tend to co-localize together on functional genomic regions critical for regulating gene expression, while retinal-input-induced epigenetic changes are enriched on repetitive elements. Enhancers identified in neurons are prone to methylation dynamics during development, and activity-induced enhancers are associated with retinal-input-induced epigenetic changes. Intriguingly, the binding motifs of activity-dependent transcription factors, including EGR1 and members of MEF2 family, are enriched in the genomic regions with epigenetic aberrations in dLGN tissues of mutant mice lacking retinal inputs. Overall, our study sheds new light on the epigenetic regulatory mechanisms underlying the role of retinal inputs on the development of mouse dLGN.
- Virtual methylome dissection facilitated by single-cell analysesYin, Liduo; Luo, Yanting; Xu, Xiguang; Wen, Shiyu; Wu, Xiaowei; Lu, Xuemei; Xie, Hehuang David (2019-11-11)Background Numerous cell types can be identified within plant tissues and animal organs, and the epigenetic modifications underlying such enormous cellular heterogeneity are just beginning to be understood. It remains a challenge to infer cellular composition using DNA methylomes generated for mixed cell populations. Here, we propose a semi-reference-free procedure to perform virtual methylome dissection using the nonnegative matrix factorization (NMF) algorithm. Results In the pipeline that we implemented to predict cell-subtype percentages, putative cell-type-specific methylated (pCSM) loci were first determined according to their DNA methylation patterns in bulk methylomes and clustered into groups based on their correlations in methylation profiles. A representative set of pCSM loci was then chosen to decompose target methylomes into multiple latent DNA methylation components (LMCs). To test the performance of this pipeline, we made use of single-cell brain methylomes to create synthetic methylomes of known cell composition. Compared with highly variable CpG sites, pCSM loci achieved a higher prediction accuracy in the virtual methylome dissection of synthetic methylomes. In addition, pCSM loci were shown to be good predictors of the cell type of the sorted brain cells. The software package developed in this study is available in the GitHub repository (https://github.com/Gavin-Yinld). Conclusions We anticipate that the pipeline implemented in this study will be an innovative and valuable tool for the decoding of cellular heterogeneity.