Award-winning Theses and Dissertations
Permanent URI for this collection
Every year, the Virginia Tech Graduate School honors several outstanding theses and dissertations, and some theses and dissertations have won external awards. Browse these works here.
- 2016: "Virginia Tech Graduate School honors top scholars of the 2015-16 academic year"
- 2013: "Laura Gambrel, Justin Lemkul receive 2013 Outstanding Dissertation Award"
- 2012: "Robert Neal and Catherine Larochelle receive 2012 Outstanding Dissertation Awards from Graduate School"
- 2011: "Nikkhah wins best dissertation for identification of cell biomechanical signatures"
- 2011: "Graduate students receive William Preston Society Thesis awards"
- 2010: "Graduate School selects outstanding master's research from Class of 2010"
Browse
Browsing Award-winning Theses and Dissertations by Department "Chemistry"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Investigating Cathode–Electrolyte Interfacial Degradation Mechanism to Enhance the Performance of Rechargeable Aqueous BatteriesZhang, Yuxin (Virginia Tech, 2023-12-04)The invention of Li-ion batteries (LIBs) marks a new era of energy storage and allows for the large-scale industrialization of electric vehicles. However, the flammable organic electrolyte in LIBs raises significant safety concerns and has resulted in numerous fires and explosion accidents. In the pursuit of more reliable and stable battery solutions, interests in aqueous batteries composed of high-energy cathodes and water-based electrolytes are surging. Limited by the narrow electrochemical stability window (ESW) of water, conventional aqueous batteries only achieve inferior energy densities. Current development mainly focuses on manipulating the properties of aqueous electrolytes through introducing excessive salts or secondary solvents, which enables an unprecedentedly broad ESW and more selections of electrode materials while also resulting in some compromises. On the other hand, the interaction between electrodes and aqueous electrolytes and associated electrode failure mechanism, as the key factors that govern cell performance, are of vital importance yet not fully understood. Owing to the high-temperature calcination synthesis, most electrode materials are intrinsically moisture-free and sensitive to the water-rich environment. Therefore, compared to the degradation behaviors in conventional LIBs, such as cracking and structure collapse, the electrode may suffer more severe damage during cycling and lead to rapid capacity decay. Herein, we adopted multi-scale characterization techniques to identify the failure modes at cathode–electrolyte interface and provide strategies for improving the cell capacity and life during prolonged cycling. In Chapter 1, we first provide a background introduction of conventional non-aqueous and aqueous batteries. We then show the current development of modern aqueous batteries through electrolyte modification and their merits and drawbacks. Finally, we present typical electrode failure mechanism in non-aqueous electrolytes and discuss how water can further impact the degradation behaviors. In Chapter 2, we prepare three types of aqueous electrolytes and systematically evaluate the electrochemical performance of LiNixMnyCo1-x-yO2, LiMn2O4 and LiFePO4 in the aqueous electrolytes. Combing surface- and bulk-sensitive techniques, we identify the roles played by surface exfoliation, structure degradation, transition metal dissolution and interface formation in terms of the capacity decay in different cathode materials. We also provide fundamental insights into the materials selection and electrolyte design in the aqueous batteries. In Chapter 3, we select LiMn2O4 as the material platform to study the transition metal dissolution behavior. Relying on the spatially resolved X-ray fluorescence microscopy, we discover a voltage-dependent Mn dissolution/redeposition (D/R) process during electrochemical cycling, which is confirmed to be related to the Jahn–Teller distortion and surface reconstruction at different voltages. Inspired by the findings, we propose an approach to stabilize the material performance through coating sulfonated tetrafluoroethylene (i.e., Nafion) on the particle, which can regulate the proton diffusion and Mn dissolution behavior. Our study discovers the dynamic Mn D/R process and highlights the impact of coating strategy in the performance of aqueous batteries. In Chapter 4, we investigate the diffusion layer formed by transition metals at the electrode–electrolyte interface. With the help of customized cells and XFM technique, we successfully track the spatiotemporal evolution of the diffusion layer during soaking and electrochemical cycling. The thickness of diffusion layer is determined to be at micron level, which can be readily diminished when gas is generated on the electrode surface. Our approach can be further expanded to study the phase transformation and particle agglomeration at the interfacial region and provide insights into the reactive complexes. In Chapter 5, we reveal the correlation between the electrolytic water decomposition and ion intercalation behaviors in aqueous batteries. In the Na-deficient system, we discover that overcharging in the formation process can introduce more cyclable Na ions into the full cell and allows for a boosted performance from 58 mAh/g to 124 mAh/g. The mechanism can be attributed to the water oxidation on the cathode and Na-ion intercalation on the anode when the charging voltage exceeds the normal oxidation potential of cathode. We emphasize the importance of unique formation process in terms of the cell performance and cycle life of aqueous batteries. In Chapter 6, we summarize the results of our work and propose perspectives of future research directions.
- Pseudorotaxanes and Supramolecular Polypseudorotaxanes Based on the Dibenzo-24-Crown-8/Paraquat Recognition MotifHuang, Feihe (Virginia Tech, 2003-08-28)The research presented in this thesis focused on pseudorotaxanes and supramolecular polymers based on a new recognition motif, the dibenzo-24-crown-8/paraquat recognition motif. Main kinds of pseudorotaxanes and rotaxanes and various protocols used for the study of them were discussed first. By preparation and characterization of a series of pesudorotaxanes based on DB24C8 and paraquat derivatives, it was found that these complexes were stabilized by N+...O interactions, C-H...O hydrogen bonding, and face-to-face p-stacking interactions. Because methyl protons of paraquat are involved in hydrogen bonding to the host, the substitution of any methyl hydrogen on paraquat causes apparent association constant of the pseudorotaxane to decrease. The concentration dependence of apparent association constants, Ka,exp, of fast exchange host-guest systems was studied for the first time by using complexes based on viologens and crown ethers as examples. While the bis(hexafluorophosphate) salts of paraquat derivatives are predominantly ion paired in acetone (and other low dielectric constant solvents presumably) the complex based on dibenzo-24-crown-8 and paraquat is not ion paired in solution, resulting in concentration dependence of Ka,exp. However, four complexes of two different bis(m-phenylene)-32-crown-10 (BMP32C10) derivatives and bis(p-phenylene)-34-crown-10 (BPP3C10) with viologens are ion paired in solution, as shown by the fact that Ka,exp is not concentration dependent for these systems involving hosts with freer access to bound guests. X-ray crystal structures support these soluton-based assessments in that there is clearly ion pairing of the cationic guest and its PF6- counterions in the solid states of the latter four examples, but not in the former. The complexes based on the new dibenzo-24-crown-8/paraquat recognition motif are thus different from the complexes based on two old recognition motifs: the BPP34C10/BMP32C10-paraquat and DB24C8-ammonium motives. In order to compare these recognition motives further, the selectivity between two hosts, DB24C8 and BPP34C10, and two guests, dimethyl paraquat and dibenzyl ammnonium salt, was discussed. By individual and competitive complexation studies, it was demonstrated that DB24C8 is a better host than BPP34C10 for paraquat, and that paraquat is a better guest than dibenzyl ammonium salt for DB24C8. Finally the DB24C8-paraquat recognition motif was successfully applied in the preparation the first star-shaped supramolecular polymer based on a tetraparaquat guest and a DB24C8 functionalized polystyrene oligomer. A model system based on this guest and DB24C8 was also studied for comparison. It was found that the complexation in these two systems is cooperative, as are most biological complexations of multitopic species. Due to the ready availability of DB24C8 and paraquat derivatives, the new recognition motif should prove to be very valuable for self-assembly of other more sophisticated supramolecular systems.
- Tuning the Morphology and Electronic Properties of Single-Crystal LiNi0.5Mn1.5O4-δSpence, Stephanie L. (Virginia Tech, 2020-10-27)The commercialization of lithium-ion batteries has played a pivotal role in the development of consumer electronics and electric vehicles. In recent years, much research has focused on the development and modification of the active materials of electrodes to obtain higher energies for a broader range of applications. High voltage spinel materials including LiNi0.5Mn1.5O4-δ (LNMO) have been considered as promising cathode materials to address the increasing demands for improved battery performance due to their high operating potential, high energy density, and stable cycling lifetimes. In an effort to elucidate fundamental structure-property relationships, this thesis explores the tunable properties of single-crystal LNMO. Utilizing facile molten salt synthesis methods, the structural and electronic properties of LNMO can be well controlled. Chapter 2 of this thesis focuses on uncovering the effect of molten salt synthesis parameters including molten salt composition and synthetic temperature on the materials properties. A range of imaging, microscopic, and spectroscopic techniques are used to characterize structural and electronic properties which are investigated in tandem with electrochemical performance. Results indicate the Mn oxidation state is highly dependent on synthesis temperature and can dictate performance, while the molten salt composition strongly influences the particle morphology. In Chapter 3, we explore the concept of utilizing LNMO as a tunable support for heterogeneous metal nanocatalysts, where alteration of the support structure and electronics can have an influence on catalytic properties due to unique support effects. Ultimately, this work illustrates the tunable nature of single-crystal LNMO and can inform the rational design of LNMO materials for energy applications.