Scholarly Works, Mechanical Engineering
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Mechanical Engineering by Department "Center for Neutrino Physics"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Supernova Physics at DUNEAnkowski, Artur M.; Beacom, John; Benhar, Omar; Chen, Sun; Cherry, J. J.; Cui, Yanou; Friedland, Alexander; Gil-Botella, Ines; Haghighat, Alireza; Horiuchi, Shunsaku; Huber, Patrick; Kneller, James; Laha, Ranjan; Li, Shirley; Link, Jonathan M.; Lovato, Alessandro; Macias, Oscar; Mariani, Camillo; Mezzacappa, Anthony; O'Connor, Evan; O'Sullivan, Erin; Rubbia, Andre; Scholberg, Kate; Takeuchi, Tatsu (2016)The DUNE/LBNF program aims to address key questions in neutrino physics and astroparticle physics. Realizing DUNE’s potential to reconstruct low-energy particles in the 10–100 MeV energy range will bring significant benefits for all DUNE’s science goals. In neutrino physics, low-energy sensitivity will improve neutrino energy reconstruction in the GeV range relevant for the kinematics of DUNE’s long-baseline oscillation program. In astroparticle physics, low-energy capabilities will make DUNE’s far detectors the world’s best apparatus for studying the electron-neutrino flux from a supernova. This will open a new window to unrivaled studies of the dynamics and neutronization of a star’s central core in real time, the potential discovery of the neutrino mass hierarchy, provide new sensitivity to physics beyond the Standard Model, and evidence of neutrino quantum-coherence effects. The same capabilities will also provide new sensitivity to ‘boosted dark matter’ models that are not observable in traditional direct dark matter detectors.