Fralin Biomedical Research Institute at VTC
Permanent URI for this community
The Fralin Biomedical Research Institute was named in 2019, and was formerly the Virginia Tech Carilion Research Institute.
Browse
Browsing Fralin Biomedical Research Institute at VTC by Department "Fralin Life Sciences Institute"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Accurate human microsatellite genotypes from high-throughput resequencing data using informed error profilesHighnam, Gareth; Franck, Christopher T.; Martin, Andy; Stephens, Calvin; Puthige, Ashwin; Mittelman, David (Oxford University Press, 2013-01)Repetitive sequences are biologically and clinically important because they can influence traits and disease, but repeats are challenging to analyse using short-read sequencing technology. We present a tool for genotyping microsatellite repeats called RepeatSeq, which uses Bayesian model selection guided by an empirically derived error model that incorporates sequence and read properties. Next, we apply RepeatSeq to high-coverage genomes from the 1000 Genomes Project to evaluate performance and accuracy. The software uses common formats, such as VCF, for compatibility with existing genome analysis pipelines. Source code and binaries are available at http://github.com/adaptivegenome/repeatseq.
- Cell Cycle Model System for Advancing Cancer Biomarker ResearchLazar, Iuliana M.; Hoeschele, Ina; de Morais, Juliana; Tenga, Milagros J. (Springer Nature, 2017-12-21)Progress in understanding the complexity of a devastating disease such as cancer has underscored the need for developing comprehensive panels of molecular markers for early disease detection and precision medicine applications. The present study was conducted to assess whether a cohesive biological context can be assigned to protein markers derived from public data mining, and whether mass spectrometry can be utilized to screen for the co-expression of functionally related biomarkers to be recommended for further exploration in clinical context. Cell cycle arrest/release experiments of MCF7/SKBR3 breast cancer and MCF10 non-tumorigenic cells were used as a surrogate to support the production of proteins relevant to aberrant cell proliferation. Information downloaded from the scientific public domain was queried with bioinformatics tools to generate an initial list of 1038 cancer-associated proteins. Mass spectrometric analysis of cell extracts identified 352 proteins that could be matched to the public list. Differential expression, enrichment, and protein-protein interaction analysis of the proteomic data revealed several functionally-related clusters of relevance to cancer. The results demonstrate that public data derived from independent experiments can be used to inform biological research and support the development of molecular assays for probing the characteristics of a disease.
- Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic ArchaeaYu, Hang; Susanti, Dwi; McGlynn, Shawn E.; Skennerton, Connor T.; Chourey, Karuna; Iyer, Ramsunder; Scheller, Silvan; Tavormina, Patricia L.; Hettich, Robert L.; Mukhopadhyay, Biswarup; Orphan, Victoria J. (Frontiers, 2018-12-03)Sulfate is the predominant electron acceptor for anaerobic oxidation of methane (AOM) in marine sediments. This process is carried out by a syntrophic consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB) through an energy conservation mechanism that is still poorly understood. It was previously hypothesized that ANME alone could couple methane oxidation to dissimilatory sulfate reduction, but a genetic and biochemical basis for this proposal has not been identified. Using comparative genomic and phylogenetic analyses, we found the genetic capacity in ANME and related methanogenic archaea for sulfate reduction, including sulfate adenylyltransferase, APS kinase, APS/PAPS reductase and two different sulfite reductases. Based on characterized homologs and the lack of associated energy conserving complexes, the sulfate reduction pathways in ANME are likely used for assimilation but not dissimilation of sulfate. Environmental metaproteomic analysis confirmed the expression of 6 proteins in the sulfate assimilation pathway of ANME. The highest expressed proteins related to sulfate assimilation were two sulfite reductases, namely assimilatory-type low-molecular-weight sulfite reductase (alSir) and a divergent group of coenzyme F-420-dependent sulfite reductase (Group II Fsr). In methane seep sediment microcosm experiments, however, sulfite and zero-valent sulfur amendments were inhibitory to ANME-2a/2c while growth in their syntrophic SRB partner was not observed. Combined with our genomic and metaproteomic results, the passage of sulfur species by ANME as metabolic intermediates for their SRB partners is unlikely. Instead, our findings point to a possible niche for ANME to assimilate inorganic sulfur compounds more oxidized than sulfide in anoxic marine environments.
- EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activitySun, Zhixiong; Xu, Xiguang; He, Jianlin; Murray, Alexander; Sun, Ming-an; Wei, Xiaoran; Wang, Xia; McCoig, Emmarose; Xie, Evan; Jiang, Xi; Li, Liwu; Zhu, Jinsong; Chen, Jianjun; Morozov, Alexei; Pickrell, Alicia M.; Theus, Michelle H.; Xie, Hehuang David (2019-08-29)Life experience can leave lasting marks, such as epigenetic changes, in the brain. How life experience is translated into storable epigenetic information remains largely unknown. With unbiased data-driven approaches, we predicted that Egr1, a transcription factor important for memory formation, plays an essential role in brain epigenetic programming. We performed EGR1 ChIP-seq and validated thousands of EGR1 binding sites with methylation patterns established during postnatal brain development. More specifically, these EGR1 binding sites become hypomethylated in mature neurons but remain heavily methylated in glia. We further demonstrated that EGR1 recruits a DNA demethylase TET1 to remove the methylation marks and activate downstream genes. The frontal cortices from the knockout mice lacking Egr1 or Tet1 share strikingly similar profiles in both gene expression and DNA methylation. In summary, our study reveals EGR1 programs the brain methylome together with TET1 providing new insight into how life experience may shape the brain methylome.
- EvoCor: a platform for predicting functionally related genes using phylogenetic and expression profilesDittmar, W. James; McIver, Lauren; Michalak, Pawel; Garner, Harold R.; Valdez, Gregorio (2014-07-01)The wealth of publicly available gene expression and genomic data provides unique opportunities for computational inference to discover groups of genes that function to control specific cellular processes. Such genes are likely to have co-evolved and be expressed in the same tissues and cells. Unfortunately, the expertise and computational resources required to compare tens of genomes and gene expression data sets make this type of analysis difficult for the average end-user. Here, we describe the implementation of a web server that predicts genes involved in affecting specific cellular processes together with a gene of interest. We termed the server 'EvoCor', to denote that it detects functional relationships among genes through evolutionary analysis and gene expression correlation. This web server integrates profiles of sequence divergence derived by a Hidden Markov Model (HMM) and tissue-wide gene expression patterns to determine putative functional linkages between pairs of genes.
- Molecular Analysis of BRCA1 in Human Breast Cancer Cells Under Oxidative StressGilmore, Brian L.; Liang, Yanping; Winton, Carly E.; Patel, Kaya; Karageorge, Vasilea; Varano, A. Cameron; Dearnaley, William J.; Sheng, Zhi; Kelly, Deborah F. (Nature Publishing Group, 2017-03-06)The precise manner in which physical changes to the breast cancer susceptibility protein (BRCA1) affect its role in DNA repair events remain unclear. Indeed, cancer cells harboring mutations in BRCA1 suffer from genomic instability and increased DNA lesions. Here, we used a combination of molecular imaging and biochemical tools to study the properties of the BRCA1 in human cancer cells. Our results reveal new information for the manner in which full-length BRCA1 engages its binding partner, the BRCA1-associated Ring Domain protein (BARD1) under oxidative stress conditions. We also show how physical differences between wild type and mutated BRCA15382insC impact the cell’s response to oxidative damage. Overall, we demonstrate how clinically relevant changes to BRCA1 affect its structure-function relationship in hereditary breast cancer.
- A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applicationsGuo, Sujuan; Liang, Yanping; Murphy, Susan F.; Huang, Angela; Shen, Haihong; Kelly, Deborah F.; Sobrado, Pablo; Sheng, Zhi (Taylor & Francis, 2015-03-01)The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.
- Retinal-input-induced epigenetic dynamics in the developing mouse dorsal lateral geniculate nucleusHe, Jianlin; Xu, Xiguang; Monavarfeshani, Aboozar; Banerjee, Sharmi; Fox, Michael A.; Xie, Hehuang David (2019-02-14)DNA methylation plays important roles in the regulation of nervous system development and in cellular responses to environmental stimuli such as light-derived signals. Despite great efforts in understanding the maturation and refinement of visual circuits, we lack a clear understanding of how changes in DNA methylation correlate with visual activity in the developing subcortical visual system, such as in the dorsal lateral geniculate nucleus (dLGN), the main retino-recipient region in the dorsal thalamus. Here, we explored epigenetic dynamics underlying dLGN development at ages before and after eye opening in wild-type mice and mutant mice in which retinal ganglion cells fail to form. We observed that development-related epigenetic changes tend to co-localize together on functional genomic regions critical for regulating gene expression, while retinal-input-induced epigenetic changes are enriched on repetitive elements. Enhancers identified in neurons are prone to methylation dynamics during development, and activity-induced enhancers are associated with retinal-input-induced epigenetic changes. Intriguingly, the binding motifs of activity-dependent transcription factors, including EGR1 and members of MEF2 family, are enriched in the genomic regions with epigenetic aberrations in dLGN tissues of mutant mice lacking retinal inputs. Overall, our study sheds new light on the epigenetic regulatory mechanisms underlying the role of retinal inputs on the development of mouse dLGN.
- Rv0132c of Mycobacterium tuberculosis Encodes a Coenzyme F-420-Dependent Hydroxymycolic Acid DehydrogenasePurwantini, E.; Mukhopadhyay, Biswarup (PLOS, 2013-12-11)
- Structural, in silico, and functional analysis of a Disabled-2-derived peptide for recognition of sulfatidesSong, Wei; Gottschalk, Carter J.; Tang, Tuo-Xian; Biscardi, Andrew; Ellena, Jeffrey F.; Finkielstein, Carla V.; Brown, Anne M.; Capelluto, Daniel G. S. (2020-08-11)Disabled-2 (Dab2) is an adaptor protein that regulates the extent of platelet aggregation by two mechanisms. In the first mechanism, Dab2 intracellularly downregulates the integrin alpha (IIb)beta (3) receptor, converting it to a low affinity state for adhesion and aggregation processes. In the second mechanism, Dab2 is released extracellularly and interacts with the pro-aggregatory mediators, the integrin alpha (IIb)beta (3) receptor and sulfatides, blocking their association to fibrinogen and P-selectin, respectively. Our previous research indicated that a 35-amino acid region within Dab2, which we refer to as the sulfatide-binding peptide (SBP), contains two potential sulfatide-binding motifs represented by two consecutive polybasic regions. Using molecular docking, nuclear magnetic resonance, lipid-binding assays, and surface plasmon resonance, this work identifies the critical Dab2 residues within SBP that are responsible for sulfatide binding. Molecular docking suggested that a hydrophilic region, primarily mediated by R42, is responsible for interaction with the sulfatide headgroup, whereas the C-terminal polybasic region contributes to interactions with acyl chains. Furthermore, we demonstrated that, in Dab2 SBP, R42 significantly contributes to the inhibition of platelet P-selectin surface expression. The Dab2 SBP residues that interact with sulfatides resemble those described for sphingolipid-binding in other proteins, suggesting that sulfatide-binding proteins share common binding mechanisms.