Scholarly Works, Mathematics
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Mathematics by Department "Fralin Life Sciences Institute"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ADAM: Analysis of Discrete Models of Biological Systems Using Computer AlgebraHinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard C. (2011-07-20)Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
- The effect of negative feedback loops on the dynamics of Boolean networksSontag, Eduardo; Veliz-Cuba, Alan; Laubenbacher, Reinhard C.; Jarrah, Abdul Salam (CELL PRESS, 2008-07)Feedback loops play an important role in determining the dynamics of biological networks. To study the role of negative feedback loops, this article introduces the notion of distance-to-positive-feedback which, in essence, captures the number of independent negative feedback loops in the network, a property inherent in the network topology. Through a computational study using Boolean networks, it is shown that distance-to-positive-feedback has a strong influence on network dynamics and correlates very well with the number and length of limit cycles in the phase space of the network. To be precise, it is shown that, as the number of independent negative feedback loops increases, the number (length) of limit cycles tends to decrease (increase). These conclusions are consistent with the fact that certain natural biological networks exhibit generally regular behavior and have fewer negative feedback loops than randomized networks with the same number of nodes and same connectivity.
- JigCell Run Manager (JC-RM): a tool for managing large sets of biochemical model parametrizationsPalmisano, Alida; Hoops, Stefan; Watson, Layne T.; Jones, Thomas C.; Tyson, John J.; Shaffer, Clifford A. (Biomed Central, 2015-12-24)Background Most biomolecular reaction modeling tools allow users to build models with a single list of parameter values. However, a common scenario involves different parameterizations of the model to account for the results of related experiments, for example, to define the phenotypes for a variety of mutations (gene knockout, over expression, etc.) of a specific biochemical network. This scenario is not well supported by existing model editors, forcing the user to manually generate, store, and maintain many variations of the same model. Results We developed an extension to our modeling editor called the JigCell Run Manager (JC-RM). JC-RM allows the modeler to define a hierarchy of parameter values, simulations, and plot settings, and to save them together with the initial model. JC-RM supports generation of simulation plots, as well as export to COPASI and SBML (L3V1) for further analysis. Conclusions Developing a model with its initial list of parameter values is just the first step in modeling a biological system. Models are often parameterized in many different ways to account for mutations of the organism and/or for sets of related experiments performed on the organism. JC-RM offers two critical features: it supports the everyday management of a large model, complete with its parameterizations, and it facilitates sharing this information before and after publication. JC-RM allows the modeler to define a hierarchy of parameter values, simulation, and plot settings, and to maintain a relationship between this hierarchy and the initial model. JC-RM is implemented in Java and uses the COPASI API. JC-RM runs on all major operating systems, with minimal system requirements. Installers, source code, user manual, and examples can be found at the COPASI website (http://www.copasi.org/Projects).
- Modeling stochasticity and variability in gene regulatory networksMurrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Arat, Seda; Laubenbacher, Reinhard C. (2012-06-06)Modeling stochasticity in gene regulatory networks is an important and complex problem in molecular systems biology. To elucidate intrinsic noise, several modeling strategies such as the Gillespie algorithm have been used successfully. This article contributes an approach as an alternative to these classical settings. Within the discrete paradigm, where genes, proteins, and other molecular components of gene regulatory networks are modeled as discrete variables and are assigned as logical rules describing their regulation through interactions with other components. Stochasticity is modeled at the biological function level under the assumption that even if the expression levels of the input nodes of an update rule guarantee activation or degradation there is a probability that the process will not occur due to stochastic effects. This approach allows a finer analysis of discrete models and provides a natural setup for cell population simulations to study cell-to-cell variability. We applied our methods to two of the most studied regulatory networks, the outcome of lambda phage infection of bacteria and the p53-mdm2 complex.
- Multi-scale immunoepidemiological modeling of within-host and between-host HIV dynamics: systematic review of mathematical modelsDorratoltaj, Nargesalsadat; Nikin-Beers, Ryan; Ciupe, Stanca M.; Eubank, Stephen G.; Abbas, Kaja M. (PeerJ, 2017-09-28)Objective The objective of this study is to conduct a systematic review of multi-scale HIV immunoepidemiological models to improve our understanding of the synergistic impact between the HIV viral-immune dynamics at the individual level and HIV transmission dynamics at the population level. Background While within-host and between-host models of HIV dynamics have been well studied at a single scale, connecting the immunological and epidemiological scales through multi-scale models is an emerging method to infer the synergistic dynamics of HIV at the individual and population levels. Methods We reviewed nine articles using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework that focused on the synergistic dynamics of HIV immunoepidemiological models at the individual and population levels. Results HIV immunoepidemiological models simulate viral immune dynamics at the within-host scale and the epidemiological transmission dynamics at the between-host scale. They account for longitudinal changes in the immune viral dynamics of HIV+ individuals, and their corresponding impact on the transmission dynamics in the population. They are useful to analyze the dynamics of HIV super-infection, co-infection, drug resistance, evolution, and treatment in HIV+ individuals, and their impact on the epidemic pathways in the population. We illustrate the coupling mechanisms of the within-host and between-host scales, their mathematical implementation, and the clinical and public health problems that are appropriate for analysis using HIV immunoepidemiological models. Conclusion HIV immunoepidemiological models connect the within-host immune dynamics at the individual level and the epidemiological transmission dynamics at the population level. While multi-scale models add complexity over a single-scale model, they account for the time varying immune viral response of HIV+ individuals, and the corresponding impact on the time-varying risk of transmission of HIV+ individuals to other susceptibles in the population.
- Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal DepolarizationDougherty, Edward T.; Turner, James C.; Vogel, Frank (Hindawi Publishing Corporation, 2014-10-23)Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.
- Multistate Model Builder (MSMB): a flexible editor for compact biochemical modelsPalmisano, Alida; Hoops, Stefan; Watson, Layne T.; Jones, Thomas C, Jr.; Tyson, John J.; Shaffer, Clifford A. (Biomed Central, 2014-04-04)Background Building models of molecular regulatory networks is challenging not just because of the intrinsic difficulty of describing complex biological processes. Writing a model is a creative effort that calls for more flexibility and interactive support than offered by many of today’s biochemical model editors. Our model editor MSMB -- Multistate Model Builder -- supports multistate models created using different modeling styles. Results MSMB provides two separate advances on existing network model editors. (1) A simple but powerful syntax is used to describe multistate species. This reduces the number of reactions needed to represent certain molecular systems, thereby reducing the complexity of model creation. (2) Extensive feedback is given during all stages of the model creation process on the existing state of the model. Users may activate error notifications of varying stringency on the fly, and use these messages as a guide toward a consistent, syntactically correct model. MSMB default values and behavior during model manipulation (e.g., when renaming or deleting an element) can be adapted to suit the modeler, thus supporting creativity rather than interfering with it. MSMB’s internal model representation allows saving a model with errors and inconsistencies (e.g., an undefined function argument; a syntactically malformed reaction). A consistent model can be exported to SBML or COPASI formats. We show the effectiveness of MSMB’s multistate syntax through models of the cell cycle and mRNA transcription. Conclusions Using multistate reactions reduces the number of reactions need to encode many biochemical network models. This reduces the cognitive load for a given model, thereby making it easier for modelers to build more complex models. The many interactive editing support features provided by MSMB make it easier for modelers to create syntactically valid models, thus speeding model creation. Complete information and the installation package can be found at http://www.copasi.org/SoftwareProjects. MSMB is based on Java and the COPASI API.
- A Network Biology Approach to Denitrification in Pseudomonas aeruginosaArat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard C. (2015-02-23)Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃), and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.