Virginia Tech Carilion (VTC)
Permanent URI for this community
Browse
Browsing Virginia Tech Carilion (VTC) by Department "Biomedical Sciences and Pathobiology"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ASC-Mediated Inflammation and Pyroptosis Attenuates Brucella abortus Pathogenesis Following the Recognition of gDNATupik, Juselyn D.; Coutermarsh-Ott, Sheryl; Benton, Angela H.; King, Kellie A.; Kiryluk, Hanna D.; Caswell, Clayton C.; Allen, Irving C. (MDPI, 2020-11-30)Brucella abortus is a zoonotic pathogen that causes brucellosis. Because of Brucella’s unique LPS layer and intracellular localization predominately within macrophages, it can often evade immune detection. However, pattern recognition receptors are capable of sensing Brucella pathogen-associated molecular patterns (PAMPS). For example, NOD-like receptors (NLRs) can form a multi-protein inflammasome complex to attenuate Brucella pathogenesis. The inflammasome activates IL-1β and IL-18 to drive immune cell recruitment. Alternatively, inflammasome activation also initiates inflammatory cell death, termed pyroptosis, which augments bacteria clearance. In this report, we assess canonical and non-canonical inflammasome activation following B. abortus infection. We conducted in vivo studies using Asc−/− mice and observed decreased mouse survival, immune cell recruitment, and increased bacteria load. We also conducted studies with Caspase-11−/− mice and did not observe any significant impact on B. abortus pathogenesis. Through mechanistic studies using Asc−/− macrophages, our data suggests that the protective role of ASC may result from the induction of pyroptosis through a gasdermin D-dependent mechanism in macrophages. Additionally, we show that the recognition of Brucella is facilitated by sensing the PAMP gDNA rather than the less immunogenic LPS. Together, these results refine our understanding of the role that inflammasome activation and pyroptosis plays during brucellosis.
- Deficiency in the endocytic adaptor proteins PHETA1/2 impairs renal and craniofacial developmentAtes, Kristin M.; Wang, Tong; Moreland, Trevor; Veeranan-Karmegam, Rajalakshmi; Ma, Manxiu; Jeter, Chelsi; Anand, Priya; Wenzel, Wolfgang; Kim, Hyung-Goo; Wolfe, Lynne A.; Stephen, Joshi; Adams, David R.; Markello, Thomas; Tifft, Cynthia J.; Settlage, Robert E.; Gahl, William A.; Gonsalvez, Graydon B.; Malicdan, May Christine; Flanagan-Steet, Heather; Pan, Yuchin Albert (2020-05)A critical barrier in the treatment of endosomal and lysosomal diseases is the lack of understanding of the in vivo functions of the putative causative genes. We addressed this by investigating a key pair of endocytic adaptor proteins, PH domain-containing endocytic trafficking adaptor 1 and 2 (PHETA1/2; also known as FAM109A/B, Ses1/2, IPIP27A/B), which interact with the protein product of OCRL, the causative gene for Lowe syndrome. Here, we conducted the first study of PHETA1/2 in vivo, utilizing the zebrafish system. We found that impairment of both zebrafish orthologs, phetal and pheta2, disrupted endocytosis and ciliogenesis in renal tissues. In addition, pheta1/2 mutant animals exhibited reduced jaw size and delayed chondrocyte differentiation, indicating a role in craniofacial development. Deficiency of pheta1/2 resulted in dysregulation of cathepsin K, which led to an increased abundance of type II collagen in craniofacial cartilages, a marker of immature cartilage extracellular matrix. Cathepsin K inhibition rescued the craniofacial phenotypes in the pheta1/2 double mutants. The abnormal renal and craniofacial phenotypes in the pheta1/2 mutant animals were consistent with the clinical presentation of a patient with a de novo arginine (R) to cysteine (C) variant (R6C) of PHETA1. Expressing the patient-specific variant in zebrafish exacerbated craniofacial deficits, suggesting that the R6C allele acts in a dominant-negative manner. Together, these results provide insights into the in vivo roles of PHETA1/2 and suggest that the R6C variant is contributory to the pathogenesis of disease in the patient. This article has an associated First Person interview with the first author of the paper.
- EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activitySun, Zhixiong; Xu, Xiguang; He, Jianlin; Murray, Alexander; Sun, Ming-an; Wei, Xiaoran; Wang, Xia; McCoig, Emmarose; Xie, Evan; Jiang, Xi; Li, Liwu; Zhu, Jinsong; Chen, Jianjun; Morozov, Alexei; Pickrell, Alicia M.; Theus, Michelle H.; Xie, Hehuang David (2019-08-29)Life experience can leave lasting marks, such as epigenetic changes, in the brain. How life experience is translated into storable epigenetic information remains largely unknown. With unbiased data-driven approaches, we predicted that Egr1, a transcription factor important for memory formation, plays an essential role in brain epigenetic programming. We performed EGR1 ChIP-seq and validated thousands of EGR1 binding sites with methylation patterns established during postnatal brain development. More specifically, these EGR1 binding sites become hypomethylated in mature neurons but remain heavily methylated in glia. We further demonstrated that EGR1 recruits a DNA demethylase TET1 to remove the methylation marks and activate downstream genes. The frontal cortices from the knockout mice lacking Egr1 or Tet1 share strikingly similar profiles in both gene expression and DNA methylation. In summary, our study reveals EGR1 programs the brain methylome together with TET1 providing new insight into how life experience may shape the brain methylome.
- Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporationHendricks-Wenger, Alissa; Aycock, Kenneth N.; Nagai-Singer, Margaret A.; Coutermarsh-Ott, Sheryl; Lorenzo, Melvin F.; Gannon, Jessica; Uh, Kyungjun; Farrell, Kayla; Beitel-White, Natalie; Brock, Rebecca M.; Simon, Alexander; Morrison, Holly A.; Tuohy, Joanne L.; Clark-Deener, Sherrie; Vlaisavljevich, Eli; Davalos, Rafael V.; Lee, Kiho; Allen, Irving C. (Nature Research, 2021-04-07)New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.
- Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR–Cas9 plasmidJo, Ami; Ringel-Scaia, Veronica M.; McDaniel, Dylan K.; Thomas, Cassidy A.; Zhang, Rui; Riffle, Judy S.; Allen, Irving C.; Davis, Richey M. (2020-01-20)Background The clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 protein system is a revolutionary tool for gene therapy. Despite promising reports of the utility of CRISPR–Cas9 for in vivo gene editing, a principal problem in implementing this new process is delivery of high molecular weight DNA into cells. Results Using poly(lactic-co-glycolic acid) (PLGA), a nanoparticle carrier was designed to deliver a model CRISPR–Cas9 plasmid into primary bone marrow derived macrophages. The engineered PLGA-based carriers were approximately 160 nm and fluorescently labeled by encapsulation of the fluorophore 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). An amine-end capped PLGA encapsulated 1.6 wt% DNA, with an encapsulation efficiency of 80%. Release studies revealed that most of the DNA was released within the first 24 h and corresponded to ~ 2–3 plasmid copies released per nanoparticle. In vitro experiments conducted with murine bone marrow derived macrophages demonstrated that after 24 h of treatment with the PLGA-encapsulated CRISPR plasmids, the majority of cells were positive for TIPS pentacene and the protein Cas9 was detectable within the cells. Conclusions In this work, plasmids for the CRISPR–Cas9 system were encapsulated in nanoparticles comprised of PLGA and were shown to induce expression of bacterial Cas9 in murine bone marrow derived macrophages in vitro. These results suggest that this nanoparticle-based plasmid delivery method can be effective for future in vivo applications of the CRISPR–Cas9 system.
- Gut Microbiota and Bacterial DNA Suppress Autoimmunity by Stimulating Regulatory B Cells in a Murine Model of LupusMu, Qinghui; Edwards, Michael R.; Swartwout, Brianna K.; Cabana-Puig, Xavier; Mao, Jiangdi; Zhu, Jing; Grieco, Joseph P.; Cecere, Thomas E.; Prakash, Meeta; Reilly, Christopher M.; Puglisi, Christopher; Bachali, Prathyusha; Grammer, Amrie C.; Lipsky, Peter E.; Luo, Xin M. (2020-11-10)Autoimmune diseases, such as systemic lupus erythematosus, are characterized by excessive inflammation in response to self-antigens. Loss of appropriate immunoregulatory mechanisms contribute to disease exacerbation. We previously showed the suppressive effect of vancomycin treatment during the "active-disease" stage of lupus. In this study, we sought to understand the effect of the same treatment given before disease onset. To develop a model in which to test the regulatory role of the gut microbiota in modifying autoimmunity, we treated lupus-prone mice with vancomycin in the period before disease development (3-8 weeks of age). We found that administration of vancomycin to female MRL/lpr mice early, only during the pre-disease period but not from 3 to 15 weeks of age, led to disease exacerbation. Early vancomycin administration also reduced splenic regulatory B (Breg) cell numbers, as well as reduced circulating IL-10 and IL-35 in 8-week old mice. Further, we found that during the pre-disease period, administration of activated IL-10 producing Breg cells to mice treated with vancomycin suppressed lupus initiation, and that bacterial DNA from the gut microbiota was an inducer of Breg function. Oral gavage of bacterial DNA to mice treated with vancomycin increased Breg cells in the spleen and mesenteric lymph node at 8 weeks of age and reduced autoimmune disease severity at 15 weeks. This work suggests that a form of oral tolerance induced by bacterial DNA-mediated expansion of Breg cells suppress disease onset in the autoimmune-prone MRL/lpr mouse model. Future studies are warranted to further define the mechanism behind bacterial DNA promoting Breg cells.
- High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunityRingel-Scaia, Veronica M.; Beitel-White, Natalie; Lorenzo, Melvin F.; Brock, Rebecca M.; Huie, Kathleen E.; Coutermarsh-Ott, Sheryl; Eden, Kristin; McDaniel, Dylan K.; Verbridge, Scott S.; Rossmeisl, John H. Jr.; Oestreich, Kenneth J.; Davalos, Rafael V.; Allen, Irving C. (2019-06)Background: Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. Methods: Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. Findings: H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. Interpretation: Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity. (C) 2019 The Authors. Published by Elsevier B.V.
- Patient Derived Xenografts Expand Human Primary Pancreatic Tumor Tissue Availability for ex vivo Irreversible Electroporation TestingBrock, Rebecca M.; Beitel-White, Natalie; Coutermarsh-Ott, Sheryl; Grider, Douglas J.; Lorenzo, Melvin F.; Ringel-Scaia, Veronica M.; Manuchehrabadi, Navid; Martin, Robert C. G.; Davalos, Rafael V.; Allen, Irving C. (2020-05-22)New methods of tumor ablation have shown exciting efficacy in pre-clinical models but often demonstrate limited success in the clinic. Due to a lack of quality or quantity in primary malignant tissue specimens, therapeutic development and optimization studies are typically conducted on healthy tissue or cell-line derived rodent tumors that don't allow for high resolution modeling of mechanical, chemical, and biological properties. These surrogates do not accurately recapitulate many critical components of the tumor microenvironment that can impact in situ treatment success. Here, we propose utilizing patient-derived xenograft (PDX) models to propagate clinically relevant tumor specimens for the optimization and development of novel tumor ablation modalities. Specimens from three individual pancreatic ductal adenocarcinoma (PDAC) patients were utilized to generate PDX models. This process generated 15-18 tumors that were allowed to expand to 1.5 cm in diameter over the course of 50-70 days. The PDX tumors were morphologically and pathologically identical to primary tumor tissue. Likewise, the PDX tumors were also found to be physiologically superior to other in vitro and ex vivo models based on immortalized cell lines. We utilized the PDX tumors to refine and optimize irreversible electroporation (IRE) treatment parameters. IRE, a novel, non-thermal tumor ablation modality, is being evaluated in a diverse range of cancer clinical trials including pancreatic cancer. The PDX tumors were compared against either Pan02 mouse derived tumors or resected tissue from human PDAC patients. The PDX tumors demonstrated similar changes in electrical conductivity and Joule heating following IRE treatment. Computational modeling revealed a high similarity in the predicted ablation size of the PDX tumors that closely correlate with the data generated with the primary human pancreatic tumor tissue. Gene expression analysis revealed that IRE treatment resulted in an increase in biological pathway signaling associated with interferon gamma signaling, necrosis and mitochondria dysfunction, suggesting potential co-therapy targets. Together, these findings highlight the utility of the PDX system in tumor ablation modeling for IRE and increasing clinical application efficacy. It is also feasible that the use of PDX models will significantly benefit other ablation modality testing beyond IRE.
- The Pro-Inflammatory Chemokines CXCL9, CXCL10 and CXCL11 Are Upregulated Following SARS-CoV-2 Infection in an AKT-Dependent MannerCallahan, Victoria; Hawks, Seth A.; Crawford, Matthew A.; Lehman, Caitlin W.; Morrison, Holly A.; Ivester, Hannah M.; Akhrymuk, Ivan V.; Boghdeh, Niloufar; Flor, Rafaela; Finkielstein, Carla V.; Allen, Irving C.; Weger-Lucarelli, James; Duggal, Nisha K.; Hughes, Molly A.; Kehn-Hall, Kylene (MDPI, 2021-06-03)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Patients with severe COVID-19 may develop acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) and require mechanical ventilation. Key features of SARS-CoV-2 induced pulmonary complications include an overexpression of pro-inflammatory chemokines and cytokines that contribute to a ‘cytokine storm.’ In the current study an inflammatory state in Calu-3 human lung epithelial cells was characterized in which significantly elevated transcripts of the immunostimulatory chemokines CXCL9, CXCL10, and CXCL11 were present. Additionally, an increase in gene expression of the cytokines IL-6, TNFα, and IFN-γ was observed. The transcription of CXCL9, CXCL10, IL-6, and IFN-γ was also induced in the lungs of human transgenic angiotensin converting enzyme 2 (ACE2) mice infected with SARS-CoV-2. To elucidate cell signaling pathways responsible for chemokine upregulation in SARS-CoV-2 infected cells, small molecule inhibitors targeting key signaling kinases were used. The induction of CXCL9, CXCL10, and CXCL11 gene expression in response to SARS-CoV-2 infection was markedly reduced by treatment with the AKT inhibitor GSK690693. Samples from COVID-19 positive individuals also displayed marked increases in CXCL9, CXCL10, and CXCL11 transcripts as well as transcripts in the AKT pathway. The current study elucidates potential pathway specific targets for reducing the induction of chemokines that may be contributing to SARS-CoV-2 pathogenesis via hyperinflammation.
- Quantitative Variation in m.3243A > G Mutation Produce Discrete Changes in Energy MetabolismMcMillan, Ryan P.; Stewart, Sidney; Budnick, James A.; Caswell, Clayton C.; Hulver, Matthew W.; Mukherjee, Konark; Srivastava, Sarika (Springer Nature, 2019-04-08)Mitochondrial DNA (mtDNA) 3243A > G tRNALeu((UUR)) heteroplasmic mutation (m.3243A > G) exhibits clinically heterogeneous phenotypes. While the high mtDNA heteroplasmy exceeding a critical threshold causes mitochondrial encephalomyopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome, the low mtDNA heteroplasmy causes maternally inherited diabetes with or without deafness (MIDD) syndrome. How quantitative differences in mtDNA heteroplasmy produces distinct pathological states has remained elusive. Here we show that despite striking similarities in the energy metabolic gene expression signature, the mitochondrial bioenergetics, biogenesis and fuel catabolic functions are distinct in cells harboring low or high levels of the m.3243 A > G mutation compared to wild type cells. We further demonstrate that the low heteroplasmic mutant cells exhibit a coordinate induction of transcriptional regulators of the mitochondrial biogenesis, glucose and fatty acid metabolism pathways that lack in near homoplasmic mutant cells compared to wild type cells. Altogether, these results shed new biological insights on the potential mechanisms by which low mtDNA heteroplasmy may progressively cause diabetes mellitus.
- A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applicationsGuo, Sujuan; Liang, Yanping; Murphy, Susan F.; Huang, Angela; Shen, Haihong; Kelly, Deborah F.; Sobrado, Pablo; Sheng, Zhi (Taylor & Francis, 2015-03-01)The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.
- Retinal-input-induced epigenetic dynamics in the developing mouse dorsal lateral geniculate nucleusHe, Jianlin; Xu, Xiguang; Monavarfeshani, Aboozar; Banerjee, Sharmi; Fox, Michael A.; Xie, Hehuang David (2019-02-14)DNA methylation plays important roles in the regulation of nervous system development and in cellular responses to environmental stimuli such as light-derived signals. Despite great efforts in understanding the maturation and refinement of visual circuits, we lack a clear understanding of how changes in DNA methylation correlate with visual activity in the developing subcortical visual system, such as in the dorsal lateral geniculate nucleus (dLGN), the main retino-recipient region in the dorsal thalamus. Here, we explored epigenetic dynamics underlying dLGN development at ages before and after eye opening in wild-type mice and mutant mice in which retinal ganglion cells fail to form. We observed that development-related epigenetic changes tend to co-localize together on functional genomic regions critical for regulating gene expression, while retinal-input-induced epigenetic changes are enriched on repetitive elements. Enhancers identified in neurons are prone to methylation dynamics during development, and activity-induced enhancers are associated with retinal-input-induced epigenetic changes. Intriguingly, the binding motifs of activity-dependent transcription factors, including EGR1 and members of MEF2 family, are enriched in the genomic regions with epigenetic aberrations in dLGN tissues of mutant mice lacking retinal inputs. Overall, our study sheds new light on the epigenetic regulatory mechanisms underlying the role of retinal inputs on the development of mouse dLGN.
- Selective Histone Deacetylase 6 Inhibition Normalizes B Cell Activation and Germinal Center Formation in a Model of Systemic Lupus ErythematosusRen, Jingjing; Catalina, Michelle D.; Eden, Kristin; Liao, Xiaofeng; Read, Kaitlin A.; Luo, Xin M.; McMillan, Ryan P.; Hulver, Matthew W.; Jarpe, Matthew; Bachali, Prathyusha; Grammer, Amrie C.; Lipsky, Peter E.; Reilly, Christopher M. (2019-10-25)Autoantibody production by plasma cells (PCs) plays a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The molecular pathways by which B cells become pathogenic PC secreting autoantibodies in SLE are incompletely characterized. Histone deactylase 6 (HDAC6) is a unique cytoplasmic HDAC that modifies the interaction of a number of tubulin- associated proteins; inhibition of HDAC6 has been shown to be beneficial in murine models of SLE, but the downstream pathways accounting for the therapeutic benefit have not been clearly delineated. In the current study, we sought to determine whether selective HDAC6 inhibition would abrogate abnormal B cell activation in SLE. We treated NZB/W lupus mice with the selective HDAC6 inhibitor, ACY-738, for 4 weeks beginning at 20 weeks-of age. After only 4 weeks of treatment, manifestation of lupus nephritis (LN) were greatly reduced in these animals. We then used RNAseq to determine the genomic signatures of splenocytes from treated and untreated mice and applied computational cellular and pathway analysis to reveal multiple signaling events associated with B cell activation and differentiation in SLE that were modulated by HDAC6 inhibition. PC development was abrogated and germinal center (GC) formation was greatly reduced. When the HDAC6 inhibitor-treated lupus mouse gene signatures were compared to human lupus patient gene signatures, the results showed numerous immune, and inflammatory pathways increased in active human lupus were significantly decreased in the HDAC6 inhibitor treated animals. Pathway analysis suggested alterations in cellular metabolism might contribute to the normalization of lupus mouse spleen genomic signatures, and this was confirmed by direct measurement of the impact of the HDAC6 inhibitor on metabolic activities of murine spleen cells. Taken together, these studies show HDAC6 inhibition decreases B cell activation signaling pathways and reduces PC differentiation in SLE and suggest that a critical event might be modulation of cellular metabolism.