Department of Geography
Permanent URI for this community
Browse
Browsing Department of Geography by Department "Statistics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assessing Urban Landscape Variables’ Contributions to MicroclimatesParece, Tammy E.; Li, Jie; Campbell, James B. Jr.; Carroll, David F. (Hindawi, 2015-12-24)The well-known urban heat island (UHI) effect recognizes prevailing patterns of warmer urban temperatures relative to surrounding rural landscapes. Although UHIs are often visualized as single features, internal variations within urban landscapes create distinctive microclimates. Evaluating intraurban microclimate variability presents an opportunity to assess spatial dimensions of urban environments and identify locations that heat or cool faster than other locales. Our study employs mobile weather units and fixed weather stations to collect air temperatures across Roanoke, Virginia, USA, on selected dates over a two-year interval. Using this temperature data, together with six landscape variables, we interpolated (using Kriging and Random Forest) air temperatures across the city for each collection period. Our results estimated temperatures with small mean square errors (ranging from 0.03 to 0.14); landscape metrics explained between 60 and 91% of temperature variations (higher when the previous day’s average temperatures were included as a variable). For all days, similar spatial patterns appeared for cooler and warmer areas in mornings, with distinctive patterns as landscapes warmed during the day and over successive days. Our results revealed that the most potent landscape variables vary according to season and time of day. Our analysis contributes new dimensions and new levels of spatial and temporal detail to urban microclimate research.
- Maternal proximity to Central Appalachia surface mining and birth outcomesButtling, Lauren G.; McKnight, Molly Xi; Kolivras, Korine N.; Ranganathan, Shyam; Gohlke, Julia M. (Wolters Kluwer Health, 2021-02)Maternal residency in Central Appalachia counties with coal production has been previously associated with increased rates of low birth weight (LBW). To refine the relationship between surface mining and birth outcomes, this study employs finer spatiotemporal estimates of exposure.
Methods
We developed characterizations of annual surface mining boundaries in Central Appalachia between 1986 and 2015 using Landsat data. Maternal address on birth records was geocoded and assigned amount of surface mining within a 5 km radius of residence (street-level). Births were also assigned the amount of surface mining within residential ZIP code tabulation area (ZCTA). Associations between exposure to active mining during gestation year and birth weight, LBW, preterm birth (PTB), and term low birth weight (tLBW) were determined, adjusting for outcome rates before active mining and available covariates.Results
The percent of land actively mined within a 5 km buffer of residence (or ZCTA) was negatively associated with birth weight (5 km: β = -14.07 g; 95% confidence interval [CI] = -19.35, -8.79, P = 1.79 × 10-7; ZCTA: β = -9.93 g; 95% CI = -12.54, -7.33, P = 7.94 × 10-14). We also found positive associations between PTB and active mining within 5 km (odds ratio [OR] = 1.06; 95% CI = 1.03, 1.09, P = 1.43 × 10-4) and within ZCTA (OR = 1.04; 95% CI = 1.03, 1.06, P = 9.21 × 10-8). Positive relationships were also found between amount of active mining within 5 km or ZIP code of residence and LBW and tLBW outcomes.Conclusions
Maternal residency near active surface mining during gestation may increase risk of PTB and LBW.