Scholarly Works, Fralin Biomedical Research Institute at VTC
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Fralin Biomedical Research Institute at VTC by Department "Biochemistry"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- A chemical and biological toolbox for Type Vd secretion: Characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatumCasasanta, Michael A.; Yoo, Christopher C.; Smith, Hans B.; Duncan, Alison J.; Cochrane, Kyla; Varano, Ann C.; Allen-Vercoe, Emma; Slade, Daniel J. (Amer Soc Biochemistry Molecular Biology Inc, 2017-12-08)Fusobacterium nucleatum is an oral pathogen that is linked to multiple human infections and colorectal cancer. Strikingly, F. nucleatum achieves virulence in the absence of large, multiprotein secretion systems (Types I, II, III, IV, and VI), which are widely used by Gram-negative bacteria for pathogenesis. By contrast, F. nucleatum strains contain genomic expansions of Type V secreted effectors (autotransporters) that are critical for host cell adherence, invasion, and biofilm formation. Here, we present the first characterization of an F. nucleatum Type Vd phospholipase class A1 autotransporter (strain ATCC 25586, gene FN1704) that we hereby rename Fusobacterium phospholipase autotransporter (FplA). Biochemical analysis of multiple Fusobacterium strains revealed that FplA is expressed as a fulllength 85-kDa outer membrane–embedded protein or as a truncated phospholipase domain that remains associated with the outer membrane. Whereas the role of Type Vd secretion in bacteria remains unidentified, we show that FplA binds with high affinity to host phosphoinositide-signaling lipids, revealing a potential role for this enzyme in establishing an F. nucleatum intracellular niche. To further analyze the role of FplA, we developed an fplA gene knock-out strain, which will guide future in vivo studies to determine its potential role in F. nucleatum pathogenesis. In summary, using recombinant FplA constructs, we have identified a biochemical toolbox that includes lipid substrates for enzymatic assays, potent inhibitors, and chemical probes to detect, track, and characterize the role of Type Vd secreted phospholipases in Gramnegative bacteria.
- Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic ArchaeaYu, Hang; Susanti, Dwi; McGlynn, Shawn E.; Skennerton, Connor T.; Chourey, Karuna; Iyer, Ramsunder; Scheller, Silvan; Tavormina, Patricia L.; Hettich, Robert L.; Mukhopadhyay, Biswarup; Orphan, Victoria J. (Frontiers, 2018-12-03)Sulfate is the predominant electron acceptor for anaerobic oxidation of methane (AOM) in marine sediments. This process is carried out by a syntrophic consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB) through an energy conservation mechanism that is still poorly understood. It was previously hypothesized that ANME alone could couple methane oxidation to dissimilatory sulfate reduction, but a genetic and biochemical basis for this proposal has not been identified. Using comparative genomic and phylogenetic analyses, we found the genetic capacity in ANME and related methanogenic archaea for sulfate reduction, including sulfate adenylyltransferase, APS kinase, APS/PAPS reductase and two different sulfite reductases. Based on characterized homologs and the lack of associated energy conserving complexes, the sulfate reduction pathways in ANME are likely used for assimilation but not dissimilation of sulfate. Environmental metaproteomic analysis confirmed the expression of 6 proteins in the sulfate assimilation pathway of ANME. The highest expressed proteins related to sulfate assimilation were two sulfite reductases, namely assimilatory-type low-molecular-weight sulfite reductase (alSir) and a divergent group of coenzyme F-420-dependent sulfite reductase (Group II Fsr). In methane seep sediment microcosm experiments, however, sulfite and zero-valent sulfur amendments were inhibitory to ANME-2a/2c while growth in their syntrophic SRB partner was not observed. Combined with our genomic and metaproteomic results, the passage of sulfur species by ANME as metabolic intermediates for their SRB partners is unlikely. Instead, our findings point to a possible niche for ANME to assimilate inorganic sulfur compounds more oxidized than sulfide in anoxic marine environments.
- Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projectionsSu, Jianmin; Klemm, Michael A.; Josephson, Anne M.; Fox, Michael A. (BioMed Central, 2013-06-13)Background: Retinal ganglion cells (RGCs), the output neurons of the retina, project to over 20 distinct brain nuclei, including the lateral geniculate nucleus (LGN), a thalamic region comprised of three functionally distinct subnuclei: the ventral LGN (vLGN), the dorsal LGN (dLGN) and the intergeniculate leaflet (IGL). We previously identified reelin, an extracellular glycoprotein, as a critical factor that directs class-specific targeting of these subnuclei. Reelin is known to bind to two receptors: very-low-density lipoprotein receptor (VLDLR) and low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2). Here we examined the roles of these canonical reelin receptors in retinogeniculate targeting. Results: To assess the roles of VLDLR and LRP8 in retinogeniculate targeting, we used intraocular injections of fluorescently conjugated cholera toxin B subunit (CTB) to label all RGC axons in vivo. Retinogeniculate projections in mutant mice lacking either VLDLR or LRP8 appeared similar to controls; however, deletion of both receptors resulted in dramatic defects in the pattern of retinal innervation in LGN. Surprisingly, defects in vldlr(-/-); lrp8(-/-) double mutant mice were remarkably different than those observed in mice lacking reelin. First, we failed to observe retinal axons exiting the medial border of the vLGN and IGL to invade distant regions of non-retino-recipient thalamus. Second, an ectopic region of binocular innervation emerged in the dorsomedial pole of vldlr(-/-); lrp8(-/-) mutant dLGN. Analysis of retinal projection development, retinal terminal sizes and LGN cytoarchitecture in vldlr(-/-); lrp8(-/-) mutants, all suggest that a subset of retinal axons destined for the IGL are misrouted to the dorsomedial pole of dLGN in the absence of VLDLR and LRP8. Such mistargeting is likely the result of abnormal migration of IGL neurons into the dorsomedial pole of dLGN in vldlr(-/-); lrp8(-/-) mutants. Conclusions: In contrast to our expectations, the development of both the LGN and retinogeniculate projections appeared dramatically different in mutants lacking either reelin or both canonical reelin receptors. These results suggest that there are reelin-independent functions of VLDLR and LRP8 in LGN development, and VLDLR- and LRP8-independent functions of reelin in class-specific axonal targeting.
- EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activitySun, Zhixiong; Xu, Xiguang; He, Jianlin; Murray, Alexander; Sun, Ming-an; Wei, Xiaoran; Wang, Xia; McCoig, Emmarose; Xie, Evan; Jiang, Xi; Li, Liwu; Zhu, Jinsong; Chen, Jianjun; Morozov, Alexei; Pickrell, Alicia M.; Theus, Michelle H.; Xie, Hehuang David (2019-08-29)Life experience can leave lasting marks, such as epigenetic changes, in the brain. How life experience is translated into storable epigenetic information remains largely unknown. With unbiased data-driven approaches, we predicted that Egr1, a transcription factor important for memory formation, plays an essential role in brain epigenetic programming. We performed EGR1 ChIP-seq and validated thousands of EGR1 binding sites with methylation patterns established during postnatal brain development. More specifically, these EGR1 binding sites become hypomethylated in mature neurons but remain heavily methylated in glia. We further demonstrated that EGR1 recruits a DNA demethylase TET1 to remove the methylation marks and activate downstream genes. The frontal cortices from the knockout mice lacking Egr1 or Tet1 share strikingly similar profiles in both gene expression and DNA methylation. In summary, our study reveals EGR1 programs the brain methylome together with TET1 providing new insight into how life experience may shape the brain methylome.
- A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applicationsGuo, Sujuan; Liang, Yanping; Murphy, Susan F.; Huang, Angela; Shen, Haihong; Kelly, Deborah F.; Sobrado, Pablo; Sheng, Zhi (Taylor & Francis, 2015-03-01)The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.
- Rv0132c of Mycobacterium tuberculosis Encodes a Coenzyme F-420-Dependent Hydroxymycolic Acid DehydrogenasePurwantini, E.; Mukhopadhyay, Biswarup (PLOS, 2013-12-11)
- Structural, in silico, and functional analysis of a Disabled-2-derived peptide for recognition of sulfatidesSong, Wei; Gottschalk, Carter J.; Tang, Tuo-Xian; Biscardi, Andrew; Ellena, Jeffrey F.; Finkielstein, Carla V.; Brown, Anne M.; Capelluto, Daniel G. S. (2020-08-11)Disabled-2 (Dab2) is an adaptor protein that regulates the extent of platelet aggregation by two mechanisms. In the first mechanism, Dab2 intracellularly downregulates the integrin alpha (IIb)beta (3) receptor, converting it to a low affinity state for adhesion and aggregation processes. In the second mechanism, Dab2 is released extracellularly and interacts with the pro-aggregatory mediators, the integrin alpha (IIb)beta (3) receptor and sulfatides, blocking their association to fibrinogen and P-selectin, respectively. Our previous research indicated that a 35-amino acid region within Dab2, which we refer to as the sulfatide-binding peptide (SBP), contains two potential sulfatide-binding motifs represented by two consecutive polybasic regions. Using molecular docking, nuclear magnetic resonance, lipid-binding assays, and surface plasmon resonance, this work identifies the critical Dab2 residues within SBP that are responsible for sulfatide binding. Molecular docking suggested that a hydrophilic region, primarily mediated by R42, is responsible for interaction with the sulfatide headgroup, whereas the C-terminal polybasic region contributes to interactions with acyl chains. Furthermore, we demonstrated that, in Dab2 SBP, R42 significantly contributes to the inhibition of platelet P-selectin surface expression. The Dab2 SBP residues that interact with sulfatides resemble those described for sphingolipid-binding in other proteins, suggesting that sulfatide-binding proteins share common binding mechanisms.