Strategic Growth Area: Economical and Sustainable Materials (ESM)
Permanent URI for this collection
Browse
Browsing Strategic Growth Area: Economical and Sustainable Materials (ESM) by Department "Center for Energy Harvesting Materials and Systems (CEHMS)"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric GeneratorKishore, Ravi Anant; Mahajan, Roop L.; Priya, Shashank (MDPI, 2018-08-24)Thermoelectric generators (TEGs) are rapidly becoming the mainstream technology for converting thermal energy into electrical energy. The rise in the continuous deployment of TEGs is related to advancements in materials, figure of merit, and methods for module manufacturing. However, rapid optimization techniques for TEGs have not kept pace with these advancements, which presents a challenge regarding tailoring the device architecture for varying operating conditions. Here, we address this challenge by providing artificial neural network (ANN) models that can predict TEG performance on demand. Out of the several ANN models considered for TEGs, the most efficient one consists of two hidden layers with six neurons in each layer. The model predicted TEG power with an accuracy of ±0.1 W, and TEG efficiency with an accuracy of ±0.2%. The trained ANN model required only 26.4 ms per data point for predicting TEG performance against the 6.0 minutes needed for the traditional numerical simulations.
- Dual-phase self-biased magnetoelectric energy harvesterZhou, Yuan; Apo, Daniel J.; Priya, Shashank (AIP Publishing, 2013-11-01)We report a magnetoelectric energy harvester structure that can simultaneously scavenge magnetic and vibration energy in the absence of DC magnetic field. The structure consisted of a piezoelectric macro-fiber composite bonded to a Ni cantilever. Large magnetoelectric coefficient similar to 50 V/cm Oe and power density similar to 4.5 mW/cm(3) (1 g acceleration) were observed at the resonance frequency. An additive effect was realized when the harvester operated under dual-phase mode. The increase in voltage output at the first three resonance frequencies under dual-phase mode was found to be 2.4%, 35.5%, and 360.7%. These results present significant advancement toward high energy density multimode energy harvesting system. (C) 2013 AIP Publishing LLC.
- Energy band alignment of atomic layer deposited HfO2 on epitaxial (110)Ge grown by molecular beam epitaxyHudait, Mantu K.; Zhu, Y.; Maurya, Deepam; Priya, Shashank (AIP Publishing, 2013-03-01)The band alignment properties of atomic layer HfO2 film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO2 film. The measured valence band offset value of HfO2 relative to (110)Ge was 2.28 +/- 0.05 eV. The extracted conduction band offset value was 2.66 +/- 0.1 eV using the bandgaps of HfO2 of 5.61 eV and Ge bandgap of 0.67 eV. These band offset parameters and the interface chemical properties of HfO2/(110)Ge system are of tremendous importance for the design of future high hole mobility and low-power Ge-based metal-oxide transistor devices. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794838]
- Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle RidingYang, Yoonseok; Yeo, Jeongjin; Priya, Shashank (MDPI, 2012-07-30)Bicycles are known to be rich source of kinetic energy, some of which is available for harvesting during speedy and balanced maneuvers by the user. A conventional dynamo attached to the rim can generate a large amount of output power at an expense of extra energy input from the user. However, when applying energy conversion technology to human powered equipments, it is important to minimize the increase in extra muscular activity and to maximize the efficiency of human movements. This study proposes a novel energy harvesting methodology that utilizes lateral oscillation of bicycle frame (weaving) caused by user weight shifting movements in order to increase the pedaling force in uphill riding or during quick speed-up. Based on the 3D motion analysis, we designed and implemented the prototype of an electro-dynamic energy harvester that can be mounted on the bicycle's handlebar to collect energy from the side-to-side movement. The harvester was found to generate substantial electric output power of 6.6 mW from normal road riding. It was able to generate power even during uphill riding which has never been shown with other approaches. Moreover, harvesting of energy from weaving motion seems to increase the economy of cycling by helping efficient usage of human power.
- Magnetoelectric Interactions in Lead-Based and Lead-Free CompositesBichurin, Mirza I.; Petrov, Vladimir M.; Zakharov, Anatoly; Kovalenko, Denis; Yang, Su-Chul; Maurya, Deepam; Bedekar, Vishwas; Priya, Shashank (MDPI, 2011-04-06)Magnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition. In this manuscript, we report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias. In order to overcome the problem of toxicity of lead, we have conducted experiments with Pb-free piezoelectric compositions. Results are presented on the magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-NBTBT systems illustrating their importance as an environmentally friendly alternative.