Strategic Growth Area: Economical and Sustainable Materials (ESM)
Permanent URI for this collection
Browse
Browsing Strategic Growth Area: Economical and Sustainable Materials (ESM) by Department "Institute for Critical Technology and Applied Science"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric GeneratorKishore, Ravi Anant; Mahajan, Roop L.; Priya, Shashank (MDPI, 2018-08-24)Thermoelectric generators (TEGs) are rapidly becoming the mainstream technology for converting thermal energy into electrical energy. The rise in the continuous deployment of TEGs is related to advancements in materials, figure of merit, and methods for module manufacturing. However, rapid optimization techniques for TEGs have not kept pace with these advancements, which presents a challenge regarding tailoring the device architecture for varying operating conditions. Here, we address this challenge by providing artificial neural network (ANN) models that can predict TEG performance on demand. Out of the several ANN models considered for TEGs, the most efficient one consists of two hidden layers with six neurons in each layer. The model predicted TEG power with an accuracy of ±0.1 W, and TEG efficiency with an accuracy of ±0.2%. The trained ANN model required only 26.4 ms per data point for predicting TEG performance against the 6.0 minutes needed for the traditional numerical simulations.
- Nanomaterial enabled sensors for environmental contaminantsWillner, Marjorie R.; Vikesland, Peter J. (2018-11-22)The need and desire to understand the environment, especially the quality of one’s local water and air, has continued to expand with the emergence of the digital age. The bottleneck in understanding the environment has switched from being able to store all of the data collected to collecting enough data on a broad range of contaminants of environmental concern. Nanomaterial enabled sensors represent a suite of technologies developed over the last 15 years for the highly specific and sensitive detection of environmental contaminants. With the promise of facile, low cost, field-deployable technology, the ability to quantitatively understand nature in a systematic way will soon be a reality. In this review, we first introduce nanosensor design before exploring the application of nanosensors for the detection of three classes of environmental contaminants: pesticides, heavy metals, and pathogens.
- Overcoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose PretreatmentSathitsuksanoh, Noppadon; Xu, Bin; Zhao, Bingyu Y.; Zhang, Y. H. Percival (2013-09-27)Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. Without pretreatment, no correlation was observed between lignin contents of plant biomass and saccharification efficiency. After dilute acid pretreatment, a strong negative correlation between lignin content of plant samples and overall glucose release was observed, wherein the highest overall enzymatic glucan digestibility was 70% for the low-lignin sample. After cellulose solvent- and organic solvent-based lignocellulose fractionation pretreatment, there was no strong correlation between lignin contents and high saccharification efficiencies obtained (i.e., 80-90%). These results suggest that the importance of decreasing lignin content in plant biomass to saccharification was largely dependent on pretreatment choice and conditions.
- Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversionsShehata, Nader; Meehan, Kathleen; Hassounah, Ibrahim; Hudait, Mantu K.; Jain, Nikhil; Clavel, Michael B.; Elhelw, Sarah; Madi, Nabil (Springer, 2014-05-13)This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce3+ ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons. This opens new opportunities for applications where emission of light via both up- and down-conversions from a single nanomaterial is desired such as solar cells and bio-imaging.
- Waste not want not: life cycle implications of gold recovery and recycling from nanowastePati, Paramjeet; McGinnis, Sean; Vikesland, Peter J. (Royal Society of Chemistry, 2016-08-24)Commercial-scale applications of nanotechnology are rapidly increasing. Enhanced production of nanomaterials and nano-enabled products and their resultant disposal lead to concomitant increases in the volume of nanomaterial wastes (i.e., nanowaste). Many nanotechnologies employ resource-limited materials, such as precious metals and rare earth elements that ultimately end up as nanowaste. To make nanotechnology more sustainable it is essential to develop strategies to recover these high-value, resource-limited materials. To address this complex issue, we developed laboratory-scale methods to recover nanowaste gold. To this end, α-cyclodextrin facilitated host–guest inclusion complex formation involving second-sphere coordination of [AuBr4]− and [K(OH2)6]+ was used for gold recovery and the recovered gold was then used to produce new nanoparticles. To quantify the environmental impacts of this gold recycling process we then produced life cycle assessments to compare nanoparticulate gold production scenarios with and without recycling. The LCA results indicate that recovery and recycling of nanowaste gold can significantly reduce the environmental impacts of gold nanoparticle synthesis.